CRF example — 10/5/17

Example
(CS 585, UMass Amherst, Brendan O’Connor) =XaMe & & Qg
Q N RN AR AR R
_ 9D WD D« O 1O« " 4D O 0"« O s « O
finna bless us f(START, V. finna) | 1 |0 |0|0|ofo[1|o|o|o|o|o|o]oO
= [S] Y, \Y; \Y,
y +f(V,V,bless) f[o|o|[1]|ofo|lo|o|1]o|lo]o|lo]|1]o0
Tags: "V'"erb and pr"O"noun (and [S]tart) +f(V,Vus) {olol1]lololololol41lololol1]o
Let’s use three feature templates:
eatures: for example —
for example P fy_g(xy) = number of Local feature decomposition implies that the scoring function decomposes, too.

fyy(x.y) = number of fV,dog*-¥) = number of tokens that end with -s and

s . tokens that are word “dog” t d as Verb —0 — ¢ — !
V-V t t are tagged as Ver G 0 f(zx, 0 E 1, Yt E 0 1, Vs,
ransitions in y under a Verb tag (v) f(z,y) t fe(yi—1,yt, 71) t fr(ye—1,ys, z1)
= 0'f(START, V, finna) + 6'f(V, V, bless) + 0’f(V, V, us)

(Global features have to be COUNTS: the reason why is further below.)
For 3 word vocabulary and 2 tag types, that’s J=14 total features. -0.2|-0.8[+0.1[+0.5|+4.3[-0.3|-1.2|-0.1 [+0.1]|+5.3[-4.1 [-0.3 | +1.1[+2.2
Assume we have fixed model weights 6 and would like to score the goodness of = dotprod ()
the above tag sequence. 1]0f0j0j0joO)1]J0Jj0Oj0OJ0OJOfO|O

2 * & +
O g I (2]
N O o A O \\é\ g 2 §$ gJ L o, o -0.2[-0.8[+0.1[+0.5[+4.3[-0.3|-1.2|-0.1 [+0.1[+5.3] -4.1 [-0.3 [+1.1[+2.2
SRR RR R IR PRSI dotprod olol1]olo]ofofl1]ofo|lo]o]1]0)
Global feature vector f(x,y)=| 1|02 (0|0 |01 |01 |1]0]0]|2(0
+
& & Y Qc)? -0.2[-0.8[+0.1[+0.5[+4.3[-0.3|-1.2|-0.1 [+0.1[+5.3| -4.1 [-0.3 |[+1.1[+2.2
A0 Q0RO EIT LIS dotprod)
Model parameters 6 = -0.2|-0.8|+0.1|+0.5(+4.3]-0.3|-1.2]-0.1|+0.1[+5.3[-4.1|-0.3 | +1.1]+2.2 In the assignment we’re compiling these local feature scoring functions into
A and Bt functions.
J
Goodness score Gy) = ' f(z,y) = Z 0 f;(z,y) A(ypreyv, ycur) is the matrix of transition logprobs.
= (If this was an HMM, A would be the table of log condprobs for possible transitions.)
= -02+0+02+0+0+0 -1.2+0+0.1 +5.3 +0+0 +2.2 +0 A-vy) = Y. 05 F W1y
jEtransfeats

Global feature vector is from the sum of local feature vectors Bt(ycur) is the log-prob weight for tag ycur, according to observation information at t.

flz,y) = Z fe(ye—1, ye, 1) (If this was an HMM, Bt would be the column of log condprobs for the word.)
t
Bi(y:) = 0 fi(null, ye,)
Je(y¢—1,y¢,) = local feature vectpr including the trgpsition between these two tags, j@%;eats
and the observation of word at position t. I’'m writing “null” for the prev tag because the obs features don’t depend on the prev tag: only the
current one.
The local features are, for example: In the homework, we separate the local feature function into two feature functions: one for the transition feature,
fVV(yprev yeur, curword) = {1 if yprev=V and ycur=V, else 0} and one for observation features. In lecture | tried to talk a single local feature function combining transition and

observation features at the position just because that’s how the Chen blogpost does it.

fyy goglYPrev, yeur, curword) = {1 if ycur=V and curword=“dog”, else 0}
,d0g Why’d we remove the x’s from the math notation? We could’ve kept them if we wanted to. We just want to set

fV (yprev, yecur, curword) = {1 if ycur=V and curword ends in “s”, else 0} up the graph weights for the Viterbi algorithm. Viterbi doesn’t need to know the words. It only has to know the
,~S log-prob weights for different tags at each timestep, and the log-prob weights for different tag transitions.

And so on, repeated for different tags and words. Sparse vectors: The feature vectors are big long vectors where most elements are 0. In practice, you should
never actually allocate an array of length J in your computer’s memory. Instead, use a “sparse representation”
where you use a Python dict where you have key-value pairs only for features with a nonzero value.

