CRF example — 10/5/17
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Let’s use three feature templates:
eatures: for example —
for example P fy_g(xy) = number of Local feature decomposition implies that the scoring function decomposes, too.

fyy(x.y) = number of fV,dog*-¥) = number of tokens that end with -s and
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(Global features have to be COUNTS: the reason why is further below.)
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Model parameters 6 = -0.2|-0.8|+0.1|+0.5(+4.3]-0.3|-1.2]-0.1|+0.1[+5.3[-4.1|-0.3 | +1.1]+2.2 In the assignment we’re compiling these local feature scoring functions into
A and Bt functions.
J
Goodness score Gy) = ' f(z,y) = Z 0 f;(z,y) A(ypreyv, ycur) is the matrix of transition logprobs.
= (If this was an HMM, A would be the table of log condprobs for possible transitions.)
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Global feature vector is from the sum of local feature vectors Bt(ycur) is the log-prob weight for tag ycur, according to observation information at t.

flz,y) = Z fe(ye—1, ye, 1) (If this was an HMM, Bt would be the column of log condprobs for the word.)
t
Bi(y:) = 0 fi(null, ye, )
Je(y¢—1,y¢, ) = local feature vectpr including the trgpsition between these two tags, j@%;eats
and the observation of word at position t. I’'m writing “null” for the prev tag because the obs features don’t depend on the prev tag: only the
current one.
The local features are, for example: In the homework, we separate the local feature function into two feature functions: one for the transition feature,
fVV(yprev yeur, curword) = {1 if yprev=V and ycur=V, else 0} and one for observation features. In lecture | tried to talk a single local feature function combining transition and

observation features at the position just because that’s how the Chen blogpost does it.

fyy goglYPrev, yeur, curword) = {1 if ycur=V and curword=“dog”, else 0}
,d0g Why’d we remove the x’s from the math notation? We could’ve kept them if we wanted to. We just want to set

fV (yprev, yecur, curword) = {1 if ycur=V and curword ends in “s”, else 0} up the graph weights for the Viterbi algorithm. Viterbi doesn’t need to know the words. It only has to know the
,~S log-prob weights for different tags at each timestep, and the log-prob weights for different tag transitions.

And so on, repeated for different tags and words. Sparse vectors: The feature vectors are big long vectors where most elements are 0. In practice, you should
never actually allocate an array of length J in your computer’s memory. Instead, use a “sparse representation”
where you use a Python dict where you have key-value pairs only for features with a nonzero value.



