
finna bless us

Let’s use three feature templates:
Tags: "V"erb and pr"O"noun (and [S]tart)

y = V V V

Global feature vector f(x,y) =

Transition features:
for example
fVV(x,y) = number of
V-V transitions in y

Word-tag observation
features: for example
fV,dog(x,y) = number of
tokens that are word “dog”
under a Verb tag

“ends with s”–tag features:
fV-s(x,y) = number of
tokens that end with -s and
are tagged as Verb

Model parameters θ =

(Global features have to be COUNTS: the reason why is further below.)
For 3 word vocabulary and 2 tag types, that’s J=14 total features.
Assume we have fixed model weights θ and would like to score the goodness of
the above tag sequence.

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1

= ✓

0
f(x, y) =

JX

j=1

✓jfj(x, y)

f VV f V,-
s

f O,
fin

na

f V,b
les

s

f OOf VO f O,
ble

ss

f V,fi
nn

a

f O,
us

f V,u
s

f O,
-s

f OV

Goodness score G(y)

= –0.2 + 0 + 0.2 +0 +0 +0 –1.2 + 0 +0.1 +5.3 +0 +0 +2.2 + 0

CRF example — 10/5/17
(CS 585, UMass Amherst, Brendan O’Connor)

f SV f SO

[S]

-0.2 -0.8

Global feature vector is from the sum of local feature vectors

f(x, y) =
X

t

ft(yt�1, yt, xt)

local feature vector including the transition between these two tags,
and the observation of word at position t.

ft(yt�1, yt, xt) =

The local features are, for example:
fVV(yprev, ycur, curword) = {1 if yprev=V and ycur=V, else 0}

fV,dog(yprev, ycur, curword) = {1 if ycur=V and curword=“dog”, else 0}

fV,-s(yprev, ycur, curword) = {1 if ycur=V and curword ends in “s”, else 0}

Example

 = f(x=finna bless us, y=V V V) =

f(START, V, finna)
+ f(V, V, bless)

+ f(V, V, us)

f VV f V,-
s

f O,
fin

na

f V,b
les

s

f OOf VO f O,
ble

ss

f V,fi
nn

a

f O,
us

f V,u
s

f O,
-s

f OVf SV f SO

00 1 0 2 012 100 01 0

00 1 0 0 000 000 01 0

00 0 0 1 001 010 00 0

00 0 0 1 001 100 00 0

And so on, repeated for different tags and words.

θ SV θ SO θ VV θ V,-
s

θ O,
fin

na

θ V,b
les

s

θ OOθ VO θ O,
ble

ss

θ V,fi
nn

a

θ O,
us

θ V,u
s

θ O,
-s

θ OV

00 1 0 2 012 100 01 0

Local feature decomposition implies that the scoring function decomposes, too.

G(y) = ✓

0
f(x, y) = ✓

0
X

t

ft(yt�1, yt, xt) =
X

t

✓

0
ft(yt�1, yt, xt)

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

00 1 0 0 000 000 01 0

00 0 0 1 001 010 00 0

00 0 0 1 001 100 00 0

dotprod)
-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

-0.3+4.3 -1.2 -0.3 +1.1 +2.2+5.3+0.1 +0.1-0.1+0.5 -4.1-0.2 -0.8

(

dotprod (

dotprod (

+

+

)

)

= θ'f(START, V, finna) + θ'f(V, V, bless) + θ’f(V, V, us)

=

In the assignment we’re compiling these local feature scoring functions into
A and Bt functions.

A(yt�1, yt) =
X

j2transfeats

✓jfj(yt�1, yt, xt)

A(yprev, ycur) is the matrix of transition logprobs.
(If this was an HMM, A would be the table of log condprobs for possible transitions.)

Bt(ycur) is the log-prob weight for tag ycur, according to observation information at t.
(If this was an HMM, Bt would be the column of log condprobs for the word.)

……………obs. feats…………….…..…trans. feats………

In the homework, we separate the local feature function into two feature functions: one for the transition feature,
and one for observation features. In lecture I tried to talk a single local feature function combining transition and
observation features at the position just because that’s how the Chen blogpost does it.

Why’d we remove the x’s from the math notation? We could’ve kept them if we wanted to. We just want to set
up the graph weights for the Viterbi algorithm. Viterbi doesn’t need to know the words. It only has to know the
log-prob weights for different tags at each timestep, and the log-prob weights for different tag transitions.

Sparse vectors: The feature vectors are big long vectors where most elements are 0. In practice, you should
never actually allocate an array of length J in your computer’s memory. Instead, use a “sparse representation”
where you use a Python dict where you have key-value pairs only for features with a nonzero value.

B

t

(y
t

) =
X

j2obsfeats

✓

j

f

j

(null, y
t

, x

t

)

I’m writing “null” for the prev tag because the obs features don’t depend on the prev tag: only the
current one.

