
Distributional Similarity / Semantics

CS 585, Fall 2016
Introduction to Natural Language Processing

http://people.cs.umass.edu/~brenocon/inlp2016/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

[Slides borrowed from Dan Jurafsky and David Belanger]

Why	vector	models	of	meaning?
compu7ng	the	similarity	between	words

“fast”	is	similar	to	“rapid”
“tall”	is	similar	to	“height”

Ques7on	answering:
Q:	“How	tall	is	Mt.	Everest?”
Candidate	A:	“The	official	height	of	Mount	Everest	is	29029	feet”

2

Word	similarity	for	plagiarism	detec7on

Word	similarity	for	historical	linguis7cs:
seman7c	change	over	7me

4

Kulkarni,	Al-Rfou,	Perozzi,	Skiena	2015

Dan$Jurafsky Word'similarity'for'historical'linguistics:
semantic'change'over'time

4

Kulkarni,$Al=Rfou,$Perozzi,$Skiena 2015Sagi,$Kaufmann$Clark$2013

0

5

10

15

20

25

30

35

40

45

dog deer hound

Se
m
an

tic
'B
ro
ad

en
in
g <1250

Middle$1350=1500

Modern$1500=1710

Distribu7onal	models	of	meaning
=	vector-space	models	of	meaning	
=	vector	seman7cs

Intui0ons:		Zellig	Harris	(1954):
• “oculist	and	eye-doctor	…	occur	in	almost	the	same	
environments”

• “If	A	and	B	have	almost	iden7cal	environments	we	say	that	
they	are	synonyms.”

5

Distribu7onal	models	of	meaning
=	vector-space	models	of	meaning	
=	vector	seman7cs

Intui0ons:		Zellig	Harris	(1954):
• “oculist	and	eye-doctor	…	occur	in	almost	the	same	
environments”

• “If	A	and	B	have	almost	iden7cal	environments	we	say	that	
they	are	synonyms.”

5

Firth	(1957):	
• “You	shall	know	a	word	by	the	company	it	keeps!”

Intui7on	of	distribu7onal	word	similarity

• Nida	example:
A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means...

Intui7on	of	distribu7onal	word	similarity

• Nida	example:
A bottle of tesgüino is on the table

Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

• From context words humans can guess tesgüino means...

• an	alcoholic	beverage	like	beer
• Intui7on	for	algorithm:	

• Two	words	are	similar	if	they	have	similar	word	contexts.

%
Ques<on:%%

What%do%‘art’%and%‘pharmaceu<cals’%
have%in%common?%
%
What%are%contexts%that%they%would%
both%have?%%
What%are%contexts%that%they%wouldn’t%
share?%

Comparing%Context%Vectors%

Four	kinds	of	vector	models

Sparse	vector	representa7ons
1. Mutual-informa7on	weighted	word	co-occurrence	matrices

Dense	vector	representa7ons:
2. Singular	value	decomposi7on	(and	Latent	Seman7c	Analysis)
3. Neural-network-inspired	models	(skip-grams,	CBOW)
4. Brown	clusters

9

Shared	intui7on

10

Shared	intui7on

• Model	the	meaning	of	a	word	by	“embedding”	in	a	vector	space.

10

Shared	intui7on

• Model	the	meaning	of	a	word	by	“embedding”	in	a	vector	space.
• The	meaning	of	a	word	is	a	vector	of	numbers

• Vector	models	are	also	called	“embeddings”.

10

Shared	intui7on

• Model	the	meaning	of	a	word	by	“embedding”	in	a	vector	space.
• The	meaning	of	a	word	is	a	vector	of	numbers

• Vector	models	are	also	called	“embeddings”.

• Contrast:	word	meaning	is	represented	in	many	computa7onal	
linguis7c	applica7ons	by	a	vocabulary	index	(“word	number	545”)

10

Shared	intui7on

• Model	the	meaning	of	a	word	by	“embedding”	in	a	vector	space.
• The	meaning	of	a	word	is	a	vector	of	numbers

• Vector	models	are	also	called	“embeddings”.

• Contrast:	word	meaning	is	represented	in	many	computa7onal	
linguis7c	applica7ons	by	a	vocabulary	index	(“word	number	545”)

• Old	philosophy	joke:	
Q:	What’s	the	meaning	of	life?
A:	LIFE’

10

Term-document	matrix
• Each	cell:	count	of	term	t	in	a	document	d:		gt,d:	

• Each	document	is	a	count	vector	in	ℕv:	a	column	below	

11

	Term-document	matrix

• Two	documents	are	similar	if	their	vectors	are	similar

12

	Term-document	matrix

• Two	documents	are	similar	if	their	vectors	are	similar

12

	Term-document	matrix

• Two	documents	are	similar	if	their	vectors	are	similar

12

The	words	in	a	term-document	matrix

• Each	word	is	a	count	vector	in	ℕD:	a	row	below	

13

The	words	in	a	term-document	matrix

• Each	word	is	a	count	vector	in	ℕD:	a	row	below	

13

The	words	in	a	term-document	matrix

• Two	words	are	similar	if	their	vectors	are	similar

14

The	words	in	a	term-document	matrix

• Two	words	are	similar	if	their	vectors	are	similar

14

The	words	in	a	term-document	matrix

• Two	words	are	similar	if	their	vectors	are	similar

14

Term-context	matrix	for	word	similarity

• Two	words	are	similar	in	meaning	if	their	context	
vectors	are	similar

15

Term-context	matrix	for	word	similarity

• Two	words	are	similar	in	meaning	if	their	context	
vectors	are	similar

15

Term-context	matrix	for	word	similarity

• Two	words	are	similar	in	meaning	if	their	context	
vectors	are	similar

15

Term-context	matrix	for	word	similarity

• Two	words	are	similar	in	meaning	if	their	context	
vectors	are	similar

15

Term-context	matrix	for	word	similarity

• Two	words	are	similar	in	meaning	if	their	context	
vectors	are	similar

15

The	word-word	or	word-context	matrix
• 	

16

	

17

… …

	

17

… …

	

17

… …

	

17

… …

	

17

… …

Word-word	matrix

• 	

18

2	kinds	of	co-occurrence	between	2	words

• First-order	co-occurrence	(syntagma0c	associa0on):
• They	are	typically	nearby	each	other.	
• wrote	is	a	first-order	associate	of	book	or	poem.	

• Second-order	co-occurrence	(paradigma0c	associa0on):	
• They	have	similar	neighbors.	
• wrote	is	a	second-	order	associate	of	words	like	said	or	
remarked.	

19

(Schütze and Pedersen, 1993)

which	gets	syntac,c	sim?		which	gets	topical	sim?

Problem	with	raw	counts

20

Dan$Jurafsky

Problem'with'raw'counts

• Raw$word$frequencyisnotagreat$measure$of$
association$between$words
• It’s$very$skewed
• “the”and“of”arevery$frequent,$but$maybe$notthemost$
discriminative

• We’d$rather$haveameasure$that$asks$whether$a$context$wordis
particularly'informative'aboutthetarget$word.
• Positive$Pointwise Mutual$Information$(PPMI)

19

Pointwise	Mutual	Informa7on

• 	

Posi7ve	Pointwise	Mutual	Informa7on
Dan$Jurafsky Positive'Pointwise Mutual'Information

• PMI$ranges$from$−∞55to5 + ∞
• Butthenegative$values$are$problematic

• Thingsareco=occurring$less'than'we$expectbychance
• Unreliable$without$enormous$corpora

• Imagine$w1$and$w2$whose$probability$is$each$10=6

• Hardtobe$sure$p(w1,w2)issignificantly$different$than$10=12

• Plus$it’s$not$clear$peoplearegoodat“unrelatedness”

• Sowejust$replace$negativePMIvaluesby0

• PositivePMI(PPMI)$between$word1andword2:

PPMI %&'(), %&'(+ = max log+
0(%&'(),%&'(+)
0 %&'() 0(%&'(+)

, 0

Measuring	similarity

23

Dan$Jurafsky

Measuring'similarity

• Given2target$words$v and$w
• We’ll$need$awayto$measure$their$similarity.
• Most$measure$of$vectors$similarityarebasedonthe:
• Dot'product'or$inner'product from$linear$algebra

• High$when$two$vectors$have$large$valuesinsame$dimensions.$
• Low$(in$fact$0)$for$orthogonal'vectors with zeros in$complementary$
distribution31

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Solu0on:	cosine

24

Dan$Jurafsky

Solution:'cosine

• Just$divide$thedotproductbythe$length$ofthetwo$vectors!

• This$turns$outtobethecosineofthe$angle$between$them!

33

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Cosine

25

Dan$Jurafsky

Cosine'for'computing'similarity

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

Dot product Unit vectors

vi isthePPMI$value$for$word$v in$context$i
wi isthePPMI$value$for$word$w in$context$i.

Cos(v,w)isthe$cosine$similarityofv and$w

Sec. 6.3

26

Dan$Jurafsky

large data computer
apricot 2 0 0
digital 0 1 2
information 1 6 1

36

Which$pair$of$words$is$more$similar?
cosine(apricot,information)$=$

cosine(digital,information)$=

cosine(apricot,digital)$=

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4
 0+ 6+ 2

 0+ 0+ 0

=
8
38 5

= .58

= 0

2 + 0 + 0
2 + 0 + 0 = 5 2

2 38 =5 .23

27

Dan$Jurafsky

Visualizing'vectors'and'angles

1 2 3 4 5 6 7

1

2

3

digital

apricot
information

D
im

en
si

on
 1

: ‘
la

rg
e’

Dimension 2: ‘data’37

large data
apricot 2 0
digital 0 1
information 1 6

Visualiza0on

WORD&EMBEDDINGS&

Word%Embeddings%
Sparse%Context%Vector%(10%million+%dimensional):%
%
%
Instead%represent%every%word%type%as%a%lowb
dimensional%dense%vector%(about%100%dimensional%).%%
%
%
These%don’t%come%directly%from%the%data.%They%need%
to%be%learned.%%

Vi = [0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 1, . . .]

Ei = [.253, 458, 4.56, 78.5, 120, . . .]

[This can be directly used, but maybe too slow, sparse]

Nearest%Neighbors%

•  deals%bb>%checks%approvals%vents%s<ckers%cuts%
•  warned%bb>%suggested%speculated%predicted%
stressed%argued%

•  ability%bb>%willingness%inability%eagerness%
disinclina<on%desire%

•  dark%bb>%comfy%wild%austere%cold%<nny%
•  possibility%bb>%possiblity%possibilty%dangers%
no<on%likelihood%

Nearest%Neighbors%

•  deals%bb>%checks%approvals%vents%s<ckers%cuts%
•  warned%bb>%suggested%speculated%predicted%
stressed%argued%

•  ability%bb>%willingness%inability%eagerness%
disinclina<on%desire%

•  dark%bb>%comfy%wild%austere%cold%<nny%
•  possibility%bb>%possiblity%possibilty%dangers%
no<on%likelihood%

%
Ques<on:%%

What%are%the%pros%and%cons%of%
represen<ng%word%types%with%such%

small%vectors?%

Answer:%%

Pro:%
%It%requires%less%annotated%data%to%
train%an%ML%model%on%low%dimensional%
features.%%
%
Con:%
%You%can’t%capture%all%of%the%subtlety%of%
language%in%100%dimensions.%%%(...can you?)

Learning%Embeddings%by%Preserving%
Similarity%

•  Given%long,%sparse%context%cooccurrence%
vectors%%%%%%%and%%

•  Goal:%Choose%Embeddings%%%%%%%and%%%%%%%%such%
that%similarity%is%approximately%preserved%

•  Difficulty:%need%to%do%this%for%all%words%jointly.%%
•  Solu<on:%Use%an%eigenbdecomposi<on%
(implemented%in%every%language).%%

Ei Ej

Vi Vj

V >
i Vj ⇡ E>

i Ej

Matrix factorization

9

w
or

ds

contexts

V
(counts)

≈

E
(embeddings)

B≈

latent dims
contexts

la
te

nt
 d

im
s

V T
i Vj ⇡ ET

i Ej
Vi,c ⇡

X

k

Ei,kBk,c

Reconstruct the co-occurrence matrix Preserve pairwise distances
between words i, j

Singular Value Decomposition learns E,B
(or other matrix factorization techniques)

Eigen Decomposition learns E

