Lecture: Syntax Part 2

CS 585, Fall 2016

Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2016

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

http://people.cs.umass.edu/~brenocon/inlp2016
http://people.cs.umass.edu/~brenocon/inlp2016

Context-Free Grammar

® CFG describes a generative process for an (infinite) set of

strings

® |.Nonterminal symbols
e “S”:START symbol /“Sentence” symbol

®).Terminal symbols: word vocabulary

® 3.Rules (a.k.a. Productions). Practically, two types:

“Grammar”: one NT expands to >=1 NT

always one NT on left side of rulep

Lexicon: NT expands to a terminal

S NP VP

NP Pronoun
Proper-Noun
Det Nominal
Nominal Nominal Noun
Noun

Verb

Verb NP
Verb NP PP
Verb PP

Preposition NP

I + want a morning flight

I

Los Angeles

a + flight
morning + flight
flights

do

want + a flight

leave + Boston + in the morning
leaving + on Thursday

Noun
Verb
Adjective

Pronoun
Proper-Noun

Determiner
Preposition

Conjunction

flights | breeze | trip | morning | ...
is | prefer| like| need | want | fly
cheapest | non—stop | first | latest
| other | direct | ...

me| I| youlit]| ...

Alaska | Baltimore | Los Angeles

| Chicago | United| American| ...

the | a| an| this| these | that| ...

from| to| on| near| ...

and | or| but| ...

from + Los Angeles

[only one token. ignore “L A”]

Constituent Parse Trees

S

RN

NP VP

P|r0 Verb
|

1 prefer Det

a

| /\
/\

Nom

N

Nom Noun

| |
Noun flight

morning

Figure 124 The parse tree for “I prefer a morning flight” according to grammar .%.

Representations:
Bracket notation

(12.2) [s [vp [Pro 111 Lvp Lv prefer] [np [per @l [Nom [v morning] [nom [y flight]]11]1]

Non-terminal positional spans
e.g. (NP O, 1), (VP 1,5), (NP, 2,5), etc.

Parsing with a CFG

® Task:given text and a CFG, answer:
® Does there exist at least one parse!?
® Enumerate parses (backpointers)

® Cocke-Kasami-Younger algorithm
® Bottom-up dynamic programming:
Find possible nonterminals for short spans of

sentence, then possible combinations for higher
spans

Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization)

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,
add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

CKY

Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

0 yummy foods , store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,2)7? C<>C

O
CR A
A
eeeee

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

How do we fill in C(1,2)7? <>
Put together C(1,1) <%><%>

Computational
Complexity ?

=00
SO
6300000

3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,3)7? C<>C

SERK,
I PPPPN

1

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,3)7? <>

OO

(K
(KR
NS

2222 22"

3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,3)7? <>

M 0 0N

Another way. <> <>
O V0.
X
* SPPPR

1 2 3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational

Complexity ?
How do we fill in C(1,n)? COC

0%
000

so00000

1 2 3

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity ?

How do we fill in C(1,n)?

For cell [i,j]
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

add A to cell [i,j]

Computational
Complexity ?

How do we fill in C(1,n)?

O(G n”3)

G = grammar
constant

Probabilistic CFGs

S — NPVP .80 Det — that [.10] | a[.30] | the [.60]
S — Aux NP VP 15 Noun — book |.10] | flight [.30]

S — VP .05] meal [.15] | money |.05]
NP — Pronoun .35] flights |.40] | dinner |.10]
NP — Proper-Noun .30 Verb — book [.30] | include [.30]
NP — Det Nominal .20)] prefer;|.40]
NP — Nominal .15] Pronoun — 1I.40] | she [.05]
Nominal — Noun .75] | me [.15] | you [.40]
Nominal — Nominal Noun |.20 Proper-Noun — Houston |.60)]
Nominal — Nominal PP [.05] | TWA [.40]

VP — Verb .35] Aux — does [.60] | can [40]

VP — Verb NP .20)] Preposition — from [.30] | to [.30]
VP — Verb NP PP .10 | on [.20] | near |.15]
VP — Verb PP .15] | through |.05]

VP — Verb NP NP .05]
VP — VP PP 15
PP — Preposition NP 1.0

® Defines a probabilistic generative process for words in a sentence
® Extension of HMMs, strictly speaking

® (How to learn! Fully supervised with a treebank...)

|5

(P)CFG model, (P)CKY algorithm

o CKY:given CFG and sentence w
® Does there exist at least one parse!
® Enumerate parses (backpointers)

® Probabilistic CKY: given PCFG and sentence w
® |ikelihood of sentence P(w)

® Most probable parse (““Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)

® (stopped here on 10/27/16 lecture)

® Parsing model accuracy: lots of ambiguity!!

® PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

Modern constituent parsers: enrich PCFG with lexical
information and fine-grained nonterminals

Modern dependency parsers: effectively the same trick

® Parsers’ computational efficiency

® Grammar constant; pruning & heuristic search
o O(NB) for CKY (ok? depends...)
® O(N) left-to-right incremental algorithms

® What was the syntactic training data?

Treebanks

® Penn Treebank (constituents, English)
® http://www.cis.upenn.edu/~treebank/home.html

® Recent revisions in Ononotes

® Universal Dependencies
® http://universaldependencies.org/

® Prague Treebank (syn+sem)
® many others...

® Know what you're getting!

http://www.cis.upenn.edu/~treebank/home.html
http://www.cis.upenn.edu/~treebank/home.html
http://universaldependencies.org/
http://universaldependencies.org/

Frequent noun phrases

“NP” from parser, vs. part-of-speech regex

Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore

NPEST

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell
ConsitParse

NPEST

unigrams will, united, one, government, new
ConstitParse

NPEFST

Frequent noun phrases

“NP” from parser, vs. part-of-speech regex

Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore

NPEST

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell
ConsitParse the prisoner, the warden, the draught, the fleet, the house

NPEST

unigrams will, united, one, government, new
ConstitParse the united states, the government, the agreement, the president, the white house

a

NPEFST

Frequent noun phrases

“NP” from parser, vs. part-of-speech regex

Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore

NPEST al gore’s, snake oil science, 15 months, snow in dc,

*hbunch of snake o1l science

Old Bailey unigrams

jacques, goodridge, rust, prisoner, sawtell
ConsitParse

the prisoner, the warden, the draught, the fleet, the house

NPEFST middlesex jury, public house, warrant of attorney, baron perryn,

*middlesex jury before lord loughborough

unigrams

will, united, one, government, new
ConstitParse

the united states, the government, the agreement, the president, the white house

a

united states, united nations, white house, health care,
*secretary of state warren christopher

NPEFST

((s
(NP-SBJ (NNP General) (NNP Electric) (NNP Co.))

(VP (VvBD said)
(SBAR (-NONE- 0)
(S
(NP-SBJ (PRP it))
(VP (VBD signed)
(NP
(NP (DT a) (NN contract))
(PP (-NONE- *ICH*-3)))
(PP (IN with)
(NP
(NP (DT the) (NNS developers))
(PP (IN of)
(NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))
(PP-3 (IN for)
P (NP
(NP (DT the) (JJ second) (NN phase))
enn (PP (IN of)
(NP
Treebanl((NIEASS)'FE an) (JJ independent)
(QP ($ $) (CD 400) (CD million))
(-NONE- *U*))
(NN power) (NN plant))
(, /)
(SBAR
(WHNP-2 (WDT which))
(S
(NP-SBJ-1 (-NONE- *T*-2))
(VP (VBZ is)
(VP (VBG being)
(VP (VBN built)
(NP (-NONE- *-1))
(PP-LOC (IN in)
(NP
(NP (NNP Burrillville))
(, /)
(NP (NNP R.I)))))))))))))))))

