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Context-Free Grammar
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• CFG describes a generative process for an (infinite) set of 
strings

• 1. Nonterminal symbols

• “S”: START symbol / “Sentence” symbol

• 2. Terminal symbols: word vocabulary

• 3. Rules (a.k.a. Productions).  Practically, two types:
“Grammar”:  one NT expands to >=1 NT
always one NT on left side of rulep

Lexicon:  NT expands to a terminal6 Chapter 12. Formal Grammars of English

Noun → f lights | breeze | trip | morning | . . .

Verb → is | pre f er | like | need | want | f ly
Adjective → cheapest | non− stop | f irst | latest

| other | direct | . . .

Pronoun → me | I | you | it | . . .

Proper-Noun → Alaska | Baltimore | Los Angeles
| Chicago | United | American | . . .

Determiner → the | a | an | this | these | that | . . .

Preposition → f rom | to | on | near | . . .

Conjunction → and | or | but | . . .

Figure 12.2 The lexicon forL0.

S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar forL0, with example phrases for each rule.

Fig. 12.2 gives a sample lexicon and Fig. 12.3 summarizes the grammar rules we’ve
seen so far, which we’ll call L0. Note that we can use the or-symbol | to indicate that
a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We start
with S, expand it to NP VP, then choose a random expansion of NP (let’s say to I),
and a random expansion of VP (let’s say to Verb NP), and so on until we generate the
string I prefer a morning flight. Fig. 12.4 shows a parse tree that represents a complete
derivation of I prefer a morning flight.

It is sometimes convenient to represent a parse tree in a more compact format
called bracketed notation, essentially the same as LISP tree representations; here isBRACKETED

NOTATION

the bracketed representation of the parse tree of Fig. 12.4:
(12.2) [S [NP [Pro I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]
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[only one token. ignore “L A”]



Constituent Parse Trees
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Figure 12.4 The parse tree for “I prefer a morning flight” according to grammarL0.

A CFG like that of L0 defines a formal language. We saw in Ch. 2 that a formal
language is a set of strings. Sentences (strings of words) that can be derived by a gram-
mar are in the formal language defined by that grammar, and are called grammaticalGRAMMATICAL

sentences. Sentences that cannot be derived by a given formal grammar are not in the
language defined by that grammar, and are referred to as ungrammatical. This hardUNGRAMMATICAL

line between “in” and “out” characterizes all formal languages but is only a very simpli-
fied model of how natural languages really work. This is because determining whether
a given sentence is part of a given natural language (say English) often depends on the
context. In linguistics, the use of formal languages to model natural languages is called
generative grammar, since the language is defined by the set of possible sentencesGENERATIVE

GRAMMAR

“generated” by the grammar.

12.2.1 Formal definition of context-free grammar
We conclude this section by way of summary with a quick formal description of a
context-free grammar and the language it generates. A context-free grammar G is
defined by four parameters N, Σ, P, S ( technically “is a 4-tuple”):

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A→ β , where A is a non-

terminal, β is a string of symbols from the infinite set of strings (Σ∪N)∗

S a designated start symbol

For the remainder of the book we’ll adhere to the following conventions when dis-
cussing the formal properties (as opposed to explaining particular facts about English
or other languages) of context-free grammars.

Representations:
Bracket notation

Non-terminal positional spans
e.g. (NP, 0,1), (VP, 1, 5), (NP, 2, 5), etc.



Parsing with a CFG

• Task: given text and a CFG, answer:

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Cocke-Kasami-Younger algorithm

• Bottom-up dynamic programming:
Find possible nonterminals for short spans of 
sentence, then possible combinations for higher 
spans

• Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization)
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CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

0:1

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

5

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

6

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

6

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

6

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3

NP



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3

NP



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3

NP



CKY

7

0:1

For cell [i,j]  (loop through them bottom-up)
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j]    (Recognizer)
                ... or ...
                 

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP ->  NP NP
NP ->  Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer:  per span, record list of 
possible nonterminals

Parser:  per span, record 
possible ways the 
nonterminal was 
constructed.add (A,B,C,  k) to cell [i,j]  (Parser)

0 1 2 3

NPNP



Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]
    For possible splitpoint k=(i+1)..(j-1):
        For every B in [i,k] and C in [k,j],
            If exists rule A -> B C,
                add  A to cell [i,j] Computational 

Complexity ?
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G = grammar 
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Probabilistic CFGs
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• Defines a probabilistic generative process for words in a sentence

• Extension of HMMs, strictly speaking

• (How to learn?  Fully supervised with a treebank...)

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-



(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Probabilistic CKY: given PCFG and sentence w

• Likelihood of sentence P(w)

• Most probable parse  (“Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)

16



• (stopped here on 10/27/16 lecture)

17



• Parsing model accuracy:  lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

• Modern constituent parsers: enrich PCFG with lexical 
information and fine-grained nonterminals

• Modern dependency parsers: effectively the same trick

• Parsers’ computational efficiency

• Grammar constant;  pruning & heuristic search

• O(N3) for CKY (ok? depends...)

• O(N) left-to-right incremental algorithms

• What was the syntactic training data?

18



Treebanks

• Penn Treebank (constituents, English)

• http://www.cis.upenn.edu/~treebank/home.html

• Recent revisions in Ononotes

• Universal Dependencies

• http://universaldependencies.org/

• Prague Treebank (syn+sem)

• many others...

• Know what you’re getting!

19
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Frequent noun phrases
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Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore
JK al gore’s, snake oil science, snow in dc, mine safety

NPFST al gore’s, snake oil science, 15 months, snow in dc,
*bunch of snake oil science

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell
ConsitParse the prisoner, the warden, the draught, the fleet, the house

JK middlesex jury, public house, warrant of attorney, baron perryn, justice grose

NPFST middlesex jury, public house, warrant of attorney, baron perryn,
*middlesex jury before lord loughborough

NYT unigrams will, united, one, government, new
ConstitParse he united states, the government, the agreement, the president, the white house

JK united states, united nations, white house, health care, prime minister

NPFST united states, united nations, white house, health care,
*secretary of state warren christopher

Table 3: Ranked lists of representative terms for unigrams, ConstitParse, JK, and NPFST. For NPSFT, we include the highest-
ranked phrase of length four or more (on its own line, denoted by *) in order to highlight the kinds of longer phrases that JK is
unable to extract. For the Twitter data set, we omit results for ConstitParse because there is no reliable constituent parser for tweets.

1993 and 2014. We created this data set by scraping
the Library of Congress website.17 We used Stan-
ford CoreNLP to tokenize and POS tag the bills. We
removed numbers and punctuation, and discarded all
terms that occurred in fewer than five bills. We also
augmented each bill with its author, its final outcome
(e.g., did it survive committee deliberations, did it
pass a floor vote in the Senate) from the Congres-
sional Bills Project (Adler and Wilkerson, 2014),
and its major topic area (Purpura and Hillard, 2006).

For our case study, we focused on a subset of
488 bills, introduced between 2013 and 2014, that
are primarily about law and crime. We chose this
subset because we anticipated that it would clearly
highlight partisan policy differences. For exam-
ple, the bills include legislation about immigration
enforcement and about incarceration of low-level
offenders—two areas where Democrats and Repub-
licans tend to have very different policy preferences.

5.2 Partisan Terms
We used NPFST to extract phrases from the bills,
and then created ranked lists of terms for each party
using the informative Dirichlet18 feature selection

17http://congress.gov/
18In order to lower the z-scores of uninformative, high-

frequency terms, we set the Dirichlet hyperparameters to be
proportional to the term counts from our full data set of bills.

method of Monroe et al. (2008). This method
computes a z-score for each term that reflects how
strongly that term is associated with Democrats
over Republicans—a positive z-score indicates that
Democrats are more likely to use the term, while
a negative z-score indicates that Republications are
more likely to use the term. We merged the highest-
ranked terms for each party, aggregating terms only
if one term was a substring of another and if the
terms were very likely to co-occur in a single bill,19

to form ranked lists of representative terms. Finally,
for comparison, we also used the same approach to
create ranked lists of unigrams, one for each party.

Figure 3 depicts z-score versus term count, while
table 4 lists the twenty highest-ranked terms. The
unigram lists suggest that Democratic lawmakers fo-
cus more on legislation related to mental health, ju-
venile offenders, and possibly domestic violence,
while Republican lawmakers focus more on illegal
immigration. However, many of the highest-ranked
unigrams are highly ambiguous when stripped from
their surrounding context. For example, we do
not know whether “domestic” refers to “domes-
tic violence,” “domestic terrorism,” or “domestic
programs” without manually reviewing the origi-

19We used the correlation between the terms’ tf-idf vectors
determine how likely the terms were to co-occur in a single bill.

t

“NP” from parser, vs. part-of-speech regex
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( (S 
    (NP-SBJ (NNP General) (NNP Electric) (NNP Co.) )
    (VP (VBD said) 
      (SBAR (-NONE- 0) 
        (S 
          (NP-SBJ (PRP it) )
          (VP (VBD signed) 
            (NP 
              (NP (DT a) (NN contract) )
              (PP (-NONE- *ICH*-3) ))
            (PP (IN with) 
              (NP 
                (NP (DT the) (NNS developers) )
                (PP (IN of) 
                  (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project) ))))
            (PP-3 (IN for) 
              (NP 
                (NP (DT the) (JJ second) (NN phase) )
                (PP (IN of) 
                  (NP 
                    (NP (DT an) (JJ independent) 
                      (ADJP 
                        (QP ($ $) (CD 400) (CD million) )
                        (-NONE- *U*) )
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                    (, ,) 
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                        (VP (VBZ is) 
                          (VP (VBG being) 
                            (VP (VBN built) 
                              (NP (-NONE- *-1) )
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