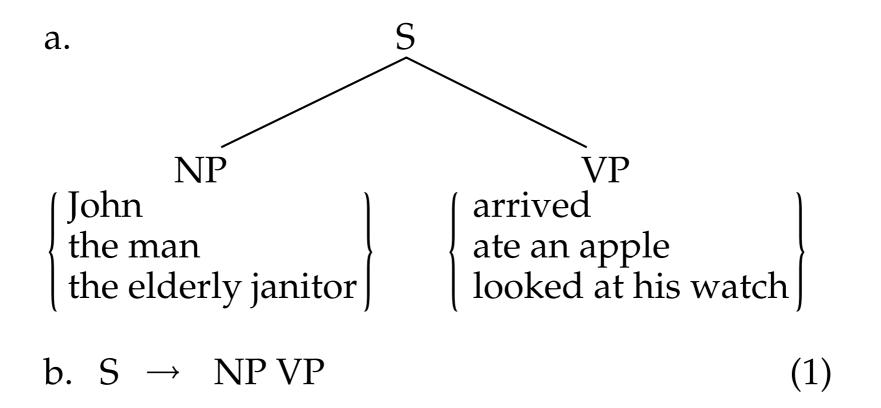
Lecture: Syntax Part I

CS 585, Fall 2016

Introduction to Natural Language Processing http://people.cs.umass.edu/~brenocon/inlp2016

Brendan O'Connor


College of Information and Computer Sciences University of Massachusetts Amherst

Midterm

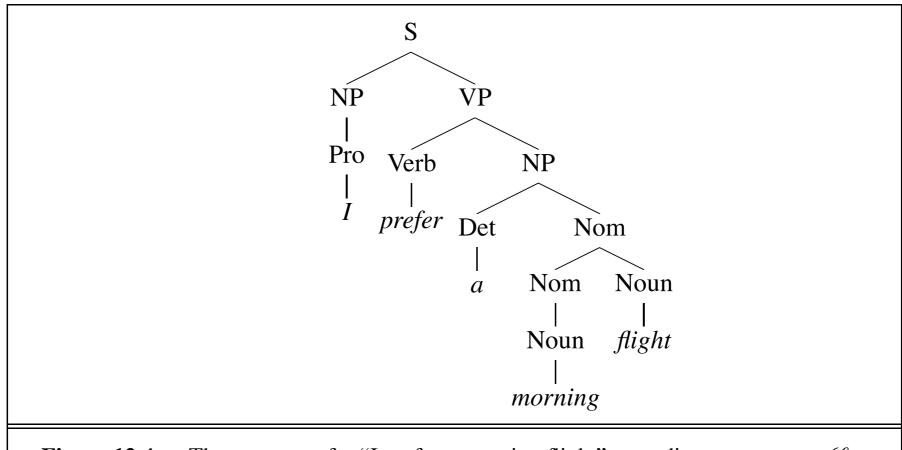
- In-class next Thursday, 11/3. Review session on Tuesday 11/1.
- Closed book EXCEPT:
 One sheet of paper of any notes you want
 (front and back)
- Covers any material so far in the course; some subset of
 - Regular Expressions
 - Text normalization
 - Markov/N-gram Language Models
 - Naive Bayes
 - Classifiers
 - HMM
 - CRF
 - Perceptron
 - Parts of speech
 - Syntactic Parsing (this week)

- Syntax: how do words structurally combine to form sentences and meaning?
- Order
 - dogs chase cats ..vs.. cats chase dogs
- Constituents
 - [the big dogs] chase cats
 - [colorless green clouds] chase cats
- Dependencies
 - The dog chased the cat.
 - My dog, a big old one, chased the cat.
- Idea of a grammar: global template for how sentences / utterances / phrases are formed
 - Linguistics
 - Generation
 - Parsing (structured prediction)

 "a Sentence made of Noun Phrase followed by a Verb Phrase"

Context-Free Grammar

- CFG describes a generative process for an (infinite) set of strings
 - I. Nonterminal symbols
 - "S": START symbol / "Sentence" symbol
 - 2. Terminal symbols: word vocabulary
 - 3. Rules (a.k.a. Productions). Practically, two types:


"Grammar": one NT expands to >= 1 NT always one NT on left side of rulep

```
S \rightarrow NP VP
                                I + want a morning flight
     NP \rightarrow Pronoun
                             Los Angeles
              Proper-Noun
              Det Nominal
                                a + flight
                                morning + flight
Nominal \rightarrow Nominal Noun
                                flights
              Noun
     VP \rightarrow Verb
                                do
              Verb NP
                                want + a flight
              Verb NP PP
                                leave + Boston + in the morning
              Verb PP
                                leaving + on Thursday
     PP \rightarrow Preposition NP
                                from + Los Angeles
```

Lexicon: NT expands to a terminal

```
Noun 
ightharpoonup flights | breeze | trip | morning | \dots Verb 
ightharpoonup is | prefer | like | need | want | fly Adjective 
ightharpoonup cheapest | non - stop | first | latest | other | direct | \dots | \text{Pronoun} 
ightharpoonup me | I | you | it | \dots | \text{Proper-Noun} 
ightharpoonup Alaska | Baltimore | Los Angeles | Chicago | United | American | \dots | \text{Determiner} 
ightharpoonup the | a | an | this | these | that | \dots | \text{Preposition} 
ightharpoonup from | to | on | near | \dots | \text{Conjunction} 
ightharpoonup and | or | but | \dots | \text{Conjunction} \rightharpoonup and | or | but | \dots | \text{Conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } | \text{but } | \dots | \text{conjunction} \text{ and } | \text{or } } | \t
```

Constituent Parse Trees

Figure 12.4 The parse tree for "I prefer a morning flight" according to grammar \mathcal{L}_0 .

Representations:

Bracket notation

(12.2) [S[NP[Pro]]][VP[V] prefer[NP[Det]][Nom[N] morning[Nom[N]]

Non-terminal positional spans

e.g. (NP, 0, I), (VP, I, 5), (NP, 2, 5), etc.

Dependencies

- Grammatical relationships between words in a sentence
- Most typically used type of parsing in modern NLP: e.g. "dependency bigrams" features
- e.g. http://nlp.stanford.edu:8080/corenlp/process
- Creeping toward semantics

CCG

CombinatoryCategorialGrammar

 Syntactic theory based on constituent types that can combine to left and right

Leo	saw		Elliot		
NP	(S\NP)/NP		NP		
		S\N]	function application		
			 function application 		
	S		(3	37)	
Leo	saw	and	Eileen heard Elliot		
— NP	 (S\NP)/NP	— conj	 NP (S\NP)/NP NP		
— typ	e raising		—— type raising		
S/(S\NP)			S/(S\NP)		
	——— function	n composit	on———— function composition		
	S/NP	1	S/NP		
			conjunction		
		S/NP			
			function applica	tion	
			S (3	38)	

Modern parsing

- Structured prediction: a tree structure
- Supervised training data: treebanks
 - Very labor intensive to create!
 - English: 1993 Penn Treebank / Wall Street Journal is still standard, more or less...
- Either constituents or dependencies
 - Dependencies are most common right now
 - Creeping towards semantics...
- Tomorrow: parsing with CFGs (most basic)