
Homework 3: Naive Bayes Classification

CS 585, UMass Amherst, Fall 2016

due Oct 7th 11:55pm

Overview

In this assignment you will build a Naive Bayes classifier that can classify movie reviews as either
positive or negative. This assignment also asks you to evaluate and analyze your system. The
goal is for you to begin to understand the Naive Bayes model, its strengths and weaknesses, how
its parameters affect its accuracy and how to use the model to do some exploratory data analysis.

Dataset

Unlike the previous two homework, you’ll be working with the Full IMDB Large Movie Review
Dataset (You only work on a small subset of movie reviews in the hw1 and hw2). A copy of the
dataset is available on the website.

The dataset includes 25,000 movie reviews for training and 25,000 movie reviews for testing.
The root directory of the dataset contains a train directory and a test directory. Each of these
directories has a pos and a neg directory containing positive and negative movie reviews respec-
tively. Make sure that when training your model you use the files in the train directory; make
sure that when testing your model you use the files in the test directory.

Running and Testing Code

We’ve partially implemented nb.py for you. Fill in the missing code as directed by this assign-
ment. The end of the file contains a runnable main function (Notice that we don’t use jupyter
notebook in this assignment, so please type python nb.py in the command line to run the
code). The code calls produce hw1 results() which you can continue to implement to pro-
duce your results. Feel free to implement whatever other helper functions you like.

By default it is set to only use 20 documents: see the num docs parameter for the training
function. This is to make it easy to very rapidly test code. For all results you report in your
solutions, always use the full dataset.

Deliverables and Due Date

You should submit a zipped directory named hw1 YOUR-USERNAME that contains:

• a document containing your responses to all of the questions in this assignment sheet (prefer-
ably in PDF format). Make sure to include any and all plots. If you have to write any of the
answers by hand, please scan them and include them in your write up.

1



• any code you wrote for this assignment. This should at least include your completed nb.py
file and may also include a completed produce hw1 results() function.

Your work must be submitted via moodle no later than midnight on Friday, Oct. 7th 11:55pm.
Our course’s collaboration policy is specified on the website.

1 Bag-of-words

Before building the model, you’ll need to get the text into a representation that the model can
handle. Recall from lecture that the Naive Bayes model makes use of a bag-of-words representa-
tion. Naive Bayes is order-independent in that it doesn’t care about the order of the words in the
documents it classifies; it only keeps track of the number of each word type it encounters.

In the nb.py, we have provided tokenize doc function to build a mapping (dictionary) of
each lower-cased token to its frequency in the document. Please use our Naive tokenization im-
plementation in tokenize doc to answer the problems in this homework. At the end of the
homework, you would have chance to use the better tokenizer you developed at the homework
1, and see whether it could actually improve the classifier performance.

1. (5 pts) Implement the update model function. Before you start, make sure to read the func-
tion comments so you know what to update. Also review the NaiveBayes class variables
to get a sense of which statistics are important to keep track of. Run the
train model function. What is the size of the vocabulary used in the training documents?
You’ll need to provide the path to the dataset you downloaded to run the code.

2. (2.5 pts) Let’s begin to explore the count statistics stored by the update model function.
Use the provided top n function to find the top 10 most common words in the positive
class and top 10 most common words in the negative class. Will the top 10 words of the
positive/negative classes help discriminate between the two classes? Do you imagine that
processing other English text will result in a similar phenomenon?

2 Word Probabilities and Pseudocounts

The Naive Bayes model assumes that all features are conditionally independent given the class
label. For our purposes, this means that the probability of seeing a particular word in a document
with class label y is independent of the rest of the words in that document.

1. (5 pts) Implement the p word given label function. This function calculates P (w|y) (i.e.,
the probability of seeing word w in a document given the label of that document is y).

2. (5 pts) Use your function to compute the probability of seeing the word “fantastic” given
each sentiment label. Repeat the computation for the word “boring.” Which word has a
higher probability given the positive class? Which word has a higher probability given the
negative class? Is this what you would expect?

3. (2.5 pts) What happens if you try to compute the probability of a word that exists in the
positive training data but not in the negative training data (and vice versa)? Explain what is
going wrong.

2



4. (5 pts) We can address this issue with psuedocounts. A psuedocount is a fixed amount added
to the count of each word stored in our model. Psuedocounts are used to help smooth cal-
culations involving words for which there is little data. Implement
p word given label and psuedocount. Hint: look at the slides on 9/20 (slide 20).

3 Prior and Likelihood

As noted before, the Naive Bayes model assumes that all words in a document are independent of
one another given the document’s label. Because of this we can write the likelihood of a document
as:

P (wd1, · · · , wdn|yd) =
n∏

i=1

P (wdi|yd)

where wdi is the ith word in document d and yd is the label of document d.
However, if a document has a lot of words, the likelihood will become extremely small and

we’ll encounter numerical underflow. Underflow is a common problem when dealing with prob-
abilistic models; if you are unfamiliar with it, you can get a brief overview on Wikipedia: https:
//en.wikipedia.org/wiki/Arithmetic_underflow. To deal with underflow, a common
transformation is to work in log-space.

1. (5 pts) Derive the log of the likelihood function above.

2. (5 pts) Implement the log likelihood function. Hint: it should make calls to the
p word given label and psuedocount function.

3. (2.5 pts) Implement the log prior function. This function takes a class label and returns
the log of the fraction of the training documents that are of that label.

4 Normalization and the Decision Rule

Naive Bayes is a model that tells us how to compute the posterior probability of a document being
of some label (i.e., P (yd|wd)). Specifically, we do so using bayes rule:

P (yd|wd) =
P (yd)P (wd|yd)

P (wd)

In the previous section you implemented functions to compute both the log prior (log[P (yd)])
and the log likelihood (log[P (wd|yd)] ). Now, all your missing is the normalizer (P (wd)).

1. (5 pts) Derive the normalizer.

2. (5 pts) Derive the log of the posterior probability by taking the log of the equation above.

3. (5 pts) One way to classify a document is to compute the unnormalized log posterior for both
labels and take the argmax (i.e., the label that yields the higher unnormalized log posterior).
The unnormalized log posterior is the sum of the log prior and the log likelihood of the
document. Why don’t we need to compute the log normalizer here?

3

https://en.wikipedia.org/wiki/Arithmetic_underflow
https://en.wikipedia.org/wiki/Arithmetic_underflow


4. (2.5 pts) Implement the unnormalized log posterior function.

5. (5 pts) Implement the classify function. The classify function should use the unnormal-
ized log posteriors but should not compute the normalizer.

5 Evaluation

After training our model and implementing the classify function we’d like to evaluate its ac-
curacy.

1. (12.5 pts) Implement the evaluate classifier accuracy function. This function should
classify all of the instances in the test set and report the fraction of instances that are classified
correctly. Report your classifier’s accuracy (with psuedocount parameter 1.0).

2. (7.5 pts) Experiment with the effect of varying the psuedocount parameter on classifier accu-
racy. Plot classifier accuracy as a function of the psuedocount parameter. We have provided
you with some sample code (the function plot psuedocount vs accuracy) to help get
you started with plotting. You may want/need to modify this function.

3. (7.5 pts) Find a review that your classifier got wrong. Why do you think your system mis-
classified this example? What improvements could you make that may help your system
classify this example correctly?

6 Exploratory Analysis

Our trained model can be queried to do exploratory data analysis. We saw that the top 10 most
common words for each class were not very discriminative. Often times, a more descriminative
statistic is a word’s likelihood ratio. A word’s likelihood ratio is defined as

LR(w) =
P (w|y = pos)

P (w|y = neg)

A word with LR = 5 is five times more likely to appear in a positive review than it is in a
negative review; a word with LR = 0.33 is one third as likely to appear in a positive review than
a negative review.

1. (2.5 pts) What is the range of the LR function?

2. (2.5 pts) Implement the likelihod ratio function. This function takes a word and com-
putes the likelihood ratio as defined above.

3. (2.5 pts) What are LR(“fantastic′′) and LR(“boring′′)? Compare these to the likelihood ratio
of some of the words in the top 10 lists generated above. For example, compare them to
LR(“the′′) and LR(“to′′).

4. (5 pts) Explain how the word LRs are related to the Naive Bayes classifier model. If a word
has LR=1, does that mean the word is or is not important for the NB classifier? If a word has
LR very far from 1 (for example, LR=0.01, or LR=100) does that mean the word is or is not
important for the classifier? What does an LR=0.01 word indicate, as compared to a LR=100
word, for the operation of the classifier? Explain.

4



7 Bonus

1. (up to 15 pts) Test different preprocessing steps to find a better bag-of-word representation
for these movie reviews. You can use the code you wrote in homework 1 or external li-
brary such as nltk to perform tokenization, text normalization (e.g., lower-casing or even
stemming), word filtering, etc.

Roughly speaking, the larger performance improvement, the more extra credit. We will also
give points for the effort in the evaluation and analysis process. For example, you can split
the training data into training and validation set to prevent overfitting, and report results
from trying different versions of features. You can also provide some qualitative examples
you found in the dataset to support your choices on preprocessing steps. Whatever you
choose to try, make sure to describe your method and the reasons that you hypothesize for
why the method works.

Finally, please don’t modify the original tokenize doc function while implement your
improvements—create your own function(s) for the preprocessing steps. Please make sure
that your submitted code can still generate the results based on the original tokenize doc.

2. (4 pts) In Naive Bayes classifier, the features are word probabilities. That means you can’t
hand engineer specific features. On the other hand, log-linear classifiers (e.g., logistic regres-
sion) can use more complex, hand-engineered features. Describe 2 features you guess that
would help classify movie reviews, and provide examples in the IMDB dataset to explain
why the features can correct the mistakes made by your Naive Bayes classifier.

Often times we care about multi-class classification rather than binary classification.

3. (2 pts) How would the count statistics that we are storing change if the model were modified
to support multi-class classification?

4. (2 pts) How would the normalizer change?

5. (2 pts) What would be the new decision rule (i.e., how would the classify function change)?

5


	Bag-of-words
	Word Probabilities and Pseudocounts
	Prior and Likelihood
	Normalization and the Decision Rule
	Evaluation
	Exploratory Analysis
	Bonus

