Midterm sample questions

UMass CS 585, Fall 2015
October 16, 2015

1 Midterm policies

The midterm will take place during lecture next Tuesday, 1 hour and 15 minutes.

It is closed book, EXCEPT you can create a 1-page “cheat sheet” for yourself with any
notes you like. One page front and back. Feel free to collaborate to create these notes.
You will probably find the studying implicit in the act of creating the notes is even more
useful than actually having them.

2 Topics on the midterm

Language concepts

Parts of speech
The Justeson-Katz noun phrase patterns

Probability / machine learning

Probability theory: Marginal probs, conditional probs, law(s) of total probability,
Bayes Rule.

Maximum likelihood estimation

Naive Bayes

Relative frequency estimation and pseudocount smoothing
Logistic regression (for binary classification)

Perceptron

Averaged Perceptron

Structured models

Hidden Markov models
Viterbi algorithm

Log-linear models and CRFs
Structured Perceptron



3 Bayes Rule

You are in a noisy bar diligently studying for your midterm, and your friend is trying to
get your attention, using only a two word vocabulary. She has said a sentence but you
couldn’t hear one of the words:

(wy = hi, wy = yo, w3 =777, w4 = yo)

Question 1. Assume that your friend was generating words from this first-order Markov
model:
p(hilhi) =0.7 p(yolhi) =0.3
p(hilyo) =0.5 p(yolyo) =0.5
Given these parameters, what is the posterior probability of whether the missing word
is llhill Or llyoll?

Question 2. The following questions concern the basic pseudocount smoothing estimator
we used in problem set 1.

1. Pseudocounts should only be added when you have lots of training data. True or
False?

2. Pseudocounts should be added only to rare words. The count of common words
should not be changed. True or False?

3. What happens to Naive Bayes document posteriors (for binary classification), if you
keep increasing the pseudocount parameter really really high? [HINT: you can try
to do this intuitively. It may help to focus on the P(w|y) terms. A rigorous approach
is to use L'Hospital’s rule.]

(a) They all become either 0 or 1.

(b) They all become 0.5.
(c) Neither of the above.

4 C(Classification

We seek to classify documents as being about sports or not. Each document is associated
with a pair (7, y), where 7' is a feature vector of word counts of the document and y is the
label for whether it is about sports (y = 1 if yes, y = 0 if false). The vocabulary is size 3,
so feature vectors look like (0,1,5), (1,1,1), etc.



4.1 Naive Bayes

Consider a naive Bayes model with the following conditional probability table:

word type 1 2 2
P(w|y=1)|1/10 | 2/10 | 7/10
P(w|y=0)]|5/10 | 2/10 | 3/10
and the following prior probabilities over classes:
Ply=1) | P(y=0)

4710 6/10

Question 3.
Consider the document with counts ¥ = (1,0, 1).

1. Which class has highest posterior probability?

2. What is the posterior probability that the document is about sports?
Question 4. Consider the document with counts 7 = (2,0, 1). Is it the case that P(y =1 |
©=1(2,0,1)) =P(y=1]|2=(1,0,1))? If not, please calculate for (2,0, 1).

Question 5. In lectures, and in the JM reading, we illustrated Naive Bayes in terms of
TOKEN generation. However, ¥ is WORD COUNTS, i.e. the BOW vector. Please rewrite
the unnormalized log posterior P(y = 1 | doc) in terms of 7, instead of in terms of each
word token as in lecture.

Question 6.

1. Suppose that we know a document is about sports, i.e. y = 1. True or False, the
Naive Bayes model is able to tell us the probability of seeing x = (0, 1, 1) under the
model.

2. If True, what is the probability?

Question 7. Now suppose that we have a new document that we don’t know the label
of. What is the probability that a word in the document is wordtype 1?

Question 8. True or False: if the Naive Bayes assumption holds for a particular dataset
(i.e., that the feature values are independent of each other given the class label) then no
other model can achieve higher accuracy on that dataset than Naive Bayes. Explain.

Question 9. Can Naive Bayes be considered a log linear model? If so, explain why; if not,
example why not.

Question 10. Show that for Naive Bayes with two classes, the decision rule f(z) can be

written in terms of %. Can the decision rule be formulated similarly for multiclass
Naive Bayes?

Question 11. In terms of exploratory data analysis, why might it be interesting and im-
portant to compute the log odds of various features?
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4.2 Logistic Regression

Question 12. Consider a logistic regression model with weights 5 = (0.5,0.25,1). A given
document has feature vector x = (1,0, 1). NOTE: for this problem you will be exponen-
tiating certain quantities. You do not need to write out your answer as a number, but
instead in terms of exp() values, e.g., P =1 + 2exp(—1).

1. What is the probability that the document is about sports?
2. What is the probability that it is not about sports?

Question 13. Consider a logistic regression model with weights 5 = (—In(4), In(2), —In(3)).
A given document has feature vector x = (1, 1,1). Now, please provide your answer in
the form of a fraction 7.

1. What is the probability that the document is about sports?

Question 14. Consider a logistic regression model with weights 5 = (5, 52, f3). A given
document has feature vector = = (1,0, 1).

1. What is a value of the vector 3 such that the probability of the document being about
sports is 1 (or incredibly close)?

2. Whatis a value of the vector 3 such that the probability of the document being about
sports is 0 (or incredibly close)?

Question 15. Consider the following two weight vectors for logistic regression:
o w = (10000, —2384092, 24249, 284924, —898)
o w' = (1.213,—.123,2.23,3.4, —2)

For which of these weight vectors is small changes between test instances likely to make
large changes in classification? Which of these models do you think generalizes better
and why?

5 Language stuff

Question 16. Each of the following sentences has an incorrect part-of-speech tag. Identify
which one and correct it. (If you think there are multiple incorrect tags, choose the one
that is the most egregious.) We’ll use a very simple tag system:

e NOUN - common noun or proper noun
e PRO - pronoun

ADJ - adjective

e ADV —adverb



e VERB - verb, including auxiliary verbs

PREP - preposition
e DET - determiner

X —something else

1. Colorless/ADV green/AD]J clouds/PRO sleep/VERB furiously/ADV ./X

2. She/PRO saw/VERB herself/PRO through/PREP the/AD] looking/ADJ glass/NOUN
/X

3. Wait/NOUN could/VERB you/PRO please/X ?/X

6 Perceptron

Question 17. In HW2 we saw an example of when the averaged perceptron outperforms
the vanilla perceptron. There is another variant of the perceptron that often outperforms
the vanilla perceptron. This variant is called the voting perceptron. Here’s how the vot-
ing perceptron works:

e initialize the weight vector

e if the voting perceptron misclassifies an example at iteration i, update the weight
vector and store it as w;.

e if it makes a correct classification at iteration ¢, do not update the weight vector but
store w; anyway.

e To classify an example with the voting perceptron, we classify that example with
each w; and tally up the number of votes for each class. The class with the most
votes is the prediction.

Despite often achieving high accuracy, the voting perceptron is rarely used in practice.
Why not?

Question 18. [NOTE: we won't ask for any proofs by induction on the test]
Recall that the averaged perceptron algorithm is as follows:

e Initializet = 1,60, =0,5, =0
e For each example i (iterating multiples times through dataset),

— Predict y* = argmax, 07 f(z;,v')

— Let gy = f(xm yz> - f(xwy*>
- Update 0, = 0,1 +rg;



- Update St = St—l + (t - 1)Tgt
-t=t+1

e Return 6, =6, — 15,

Use proof by induction to show this algorithm correctly computes the average weight
vector for any ¢, i.e.,

1 « 1
g%@tzﬁt—g&g

Question 19. For the case of the averaged perceptron, why don’t we make predictions
during training with the averaged weight vector?

Question 20. Why wouldn’t we want to use the function below to update the weight
vector when training a percetron?

def update_weights (weight_vec, gradient):
updated_weights = defaultdict (float)
for feat, weight in weight_vec.iteritems() :
updated_weights[feat] += weight
for feat, weight in gradient.iteritems():
updated_weights[feat] += weight
return updated_weights

7 HMM

Consider an HMM with 2 states, A, B and 2 possible output variables A, [, with tran-
sition and emission probabilities from HW2. All probabilities statements are implicitly
conditioning on so = START.

Question 21. Explain the difference between
P(s; = A| o0y =A)versus P(s; = A| 0y = A, s3 = END)

Question 22. Rewrite P(s; | 02) so that you could calculate it for any particular values of
s1 and o,. (This is like in HW2, except you should be able to do it abstractly without the
numbers or particular values and swap in the numbers only at the end.)

Question 23. Rewrite P(s; | 02, s3 = END) so that you could calculate it for any particu-
lar values of s; and os.

Question 24. Why does the END state matter?
Question 25. (Here’s what HW2 1.3 was supposed to be.)
Is it the case that P(os = A | sy = A) = Ploa = A | sy = A, s3 = A)?

Question 26. Write an expression that computes the probability of the HMM emitting the
sequence A, [ given that the first state is A and the length of the sequence is 2 (remember
to consider the start and end states).



8 Viterbi

Question 27. Here’s a proposal to modify Viterbi to use less memory: for each token
position ¢, instead of storing all V;[1]..V;[K], instead store one probability, for the best path
so far. Can we compute an optimal solution in this approach? Why or why not?

Question 28. Here’s an erroneous version of the (multiplicative-version) Viterbi algo-
rithm. The line in the inner loop had

e BUGGY:  V[k| := max; V,_1[j] Pirans(k | ) Pemit(wy | J)
e CORRECT: V;[k] := max; Vi_1[j] Pirans(k | 7) Pemit(wy | k)

Please describe one specific issue that the buggy version of this code would have. For
example, describe an important thing in the data that the buggy version ignores.

Question 29. Consider the Eisner ice cream HMM (from J&M 3ed ch 7, Figure 7.3), and a
sequence of just one observation, @ = (3). There are only 2 possible sequences, (HOT) or
(COLD). Calculate both their joint probabilities (p(w, y)). Which sequence is more likely?

Question 30. Now consider the observation sequence @ = (3,1, 1). Perform the Viterbi
algorithm on paper, stepping through it and drawing a diagram similar to Figure 7.10.
What is the best latent sequence, and what is its probability? To check your work, try
changing the first state; is the joint probability better or worse? (To really check your
work you could enumerate all 8 possibilities and check their probabilities, but that is not
fun without a computer.)

Question 31. Compare how the Viterbi analyzed this sequence, in contrast to what a
greedy algorithm would have done. Is it different? Why? Why is this a different situation
than the previous example of W = (3)?
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