
CS 585 Homework 4: Coreference

November 22, 2015

Submission Instructions

Your submission will be a mix of a text writeup and code. Upload a zip file with:

• your writeup (pdf format)

• code — we will only look at coref.py unless directed otherwise. But you shouldn’t
have to change anything else (except for the last extra credit question)

In your text writeup, include your name and collaborators list at the top as per the
usual course policy.

This homework is 50 points total. It also includes 35 extra credit points, which can be
used to make up for scores on previous assignments.

It is due Friday, Dec 4 (at any time, or later night).

1 Introduction

1.1 Overview

You will implement and analyze a rule-based coreference system.
Specifically, it will be an antecedent selection system, similar to what was described

in lecture. The algorithm loops through mentions in the document. For the nth mention,
it makes an antecedent decision. There are n possible outcomes (n-way classification):
either one of the n − 1 previous mentions, or else it decides to not attach to anything
mentioned previously.

1.2 Evaluating Coref Performance

There are a number of ways to evaluate the performance of a coreference system. The
provided code computes ‘pairwise’ precision and recall, which doesn’t look just at an-
tecedent decisions, but instead looks at all pairs of mentions in the same cluster. You’ll

1

see there’s only one gold-standard link in small.json (the he-him link). There’s 55,753 gold
links in the test set.

At times, we will want to compare the precision vs. recall of a given approach. At
other times, however, we’ll want a single number to summarize performance. The code
computes precision, recall, and the ‘F1’ measure (http://en.wikipedia.org/wiki/
F1_score).

1.3 Code

We provide the files

• coref.py – the code that runs coref. modify this one.

• corefutil.py – do not modify (library support)

• view.py – a utility that converts coref data into an HTML format

• mentiontest.py – to help debug your code. may be useful to modify but do not
submit.

• ml coref.py, perc.py – only for extra credit ML-based coref

• samples/ – a few small documents for quick testing and viewing.

At the bottom of corefutil.py, we provide helper functions that may be useful when de-
signing features and when debugging. To understand the document and mention datas-
tructures, see how they are created in convertJsonDocIntoMyDoc, or see how they are
used in coref.py. We also provided a script, mentiontest.py, which does not do any coref-
erence, but instead just loops through the data structures and prints them out. This might
help make it clear what these data structures look like. You can modify it to help debug
your mention analysis functions. Do not submit your mentiontest.py. You can run it with
something like

python mentiontest.py samples/small.json

coref.py is split into four parts. The first three are for code that you will complete in
Sections 2 and 4 below. The final part of coref.py provides a main function and driver code
for running different kinds of coreference. Each of these will train a model (if necessary),
perform coreference on the test set, and print an F1 score. We provide a commandline
interface. Here are some examples of how to use it (assuming you’ve downloaded and
unzipped corefdata.zip as described further below):

Test the rule-based coref system on a small example file (for debugging)
python coref.py samples/small.json

2

http://en.wikipedia.org/wiki/F1_score
http://en.wikipedia.org/wiki/F1_score

Test the rule-based coref system on one doc
python coref.py samples/bobstone.json

Test it on the full test set
python coref.py corefdata/test.jsons

Finally, note that the main function defines a ‘verbose’ flag at the top level. Toggle
this to print out lots of output. This is useful for debugging, error analysis, and feature
engineering.

2 Look at the Data

We provide a few small examples of data in the ‘samples/’ directory.
You should always test things first on a very small example like small.json. Look at the

file to see what’s in it: it’s just two sentences, and there’s only one non-singleton entity.
small.html contains an HTML version of this document, produced by view.py.

The main dataset is from the file ‘corefdata.zip’, available on the Piazza resources page.
It’s a dataset of coref-annotated documents from the CoNLL-2012 competition (http://
conll.cemantix.org/2012/). This data defines mentions as phrases (token spans),
and for each mention has an entity ID. It also contains POS tags, NER tags, and parses.
We’ll only use the POS tags to keep things simple.

test.json contains the test data. There is no training data since this is a rule-based
system. (Ignore train.json)

We ran the first 5 documents through view.py to create an HTML version viewable as
‘samples/test first 5.html’ in the zip file. These are gold standard annotations.

Question 2.1. [5 points] A good thing to do with a new dataset is read it a little bit.
In test first 5.html, go to the document wsj 1504 and read the first several sentences

of the Bob Stone story (and learn how you improve your own corporation’s governance
procedures). Explain in English what the distinction you think the annotators were mak-
ing when they said e12 and e22 are different entities. (e22 first appears in sentence S2.)
Do you agree or disagree, and why?

3 Mention Analysis Implementation

The following code should be completed in coref.py.

Question 3.1. [10 points] Implement the isPronoun(m), isProper(m), and isPlural(m) men-
tion attribute functions.

A good way to do this is to use POS tags that came from a POS tagger. (Actually the
tags in this data might be gold-standard, so that’s perhaps overly optimistic.) Implement-
ing these will require using the headTokenPOSTag() function in corefutil.py.

3

http://conll.cemantix.org/2012/
http://conll.cemantix.org/2012/

Note that the POS tags are in the Penn Treebank format. Find the PTB tagset documen-
tation online. You’ll see which tags correspond to pronouns, proper nouns, and plural
nouns. You might also have to hard-code some very small pronoun wordlists for plural
pronouns, because the PTB tagset doesn’t distinguish grammatical number for pronouns.

Please write the implementations of these functions within coref.py where they’re
specified. However, for debugging, we suggest you call them from mentiontest.py (see
the comments in there). You can run it on the sample file with:

python mentiontest.py small.json

Please remember:

• isProper should always be false for a pronoun.

• isPlural needs to work for both pronouns and nouns (POS tags for the latter might
help).

4 Rule-Based Coreference

In this section, you will implement and test a rule-based system. The algorithm is as
follows:

• Assume a window size K, which means you will look at the last K mentions as
antecedent candidates. For example, K = 5 is the default.

• For each of these candidate mentions, use a filter to accept or reject them.

• Of the accepted candidates, choose the closest one as the antecedent. If none were
accepted, choose a null antecedent.

We’ve implemented this in doRuleCoref. It calls isAcceptableAntecedent for the ac-
cept/reject filter. You only need to implement isAcceptableAntecedent.

4.1 Implementation

The version of isAcceptableAntecedent that we provide always returns False. Therefore,
it refuses to ever link a mention to any candidate. Run it on the test data (or the smaller
example files) and confirm that it should predict 0 links, yielding 100% precision but 0
recall. You should get the following results out of the box.

$ python coref.py samples/small.json
Pairwise Prec = 1.000 (0/0), Rec = 0.000 (0/1), F1 = 0.000

$ python coref.py corefdata/test.jsons
Pairwise Prec = 1.000 (0/0), Rec = 0.000 (0/55753), F1 = 0.000

4

Now play around with some different ways to implement isAcceptableAntecedent.
For example, you could choose to: only resolve pronoun mentions; or only resolve pro-
nouns to a candidate that is a non-pronoun; etc. For at least one of your versions, enforce
some sort of grammatical agreement constraint: for example, only link mentions if their
number (isPlural) attribute agrees. (The Extra credit section notes more things you can
try.)

Question 4.1. [20 points] Implement three different versions of isAcceptableAntecedent,
with different sets of rules.

In coref.py, provide each of them in its own function: rule1, rule2, rule3.

• One of the rules should only try to resolve pronouns to each other.

• One of the rules must try to resolve pronouns with non-pronouns.

• Over all the rules, use all of the mention analysis functions you just implemented at
least once (you don’t need to use all of them in every rule)

In your writeup, describe these three different rule choices. Provide the precision and
recall for each, evaluated on the entire test set (corefdata/test.json). Discuss how different
features help or don’t help. Describe which rule system is best and give your reasoning.

5 Trading Off Precision and Recall

Our system evaluates the accuracy of pairwise linking decisions. This evaluation cares
about correctly predicting coreferent pairs of mentions. It checks all pairs of predicted
links (all pairs of mentions in the same predicted cluster), and also checks all pairs of
ground-truth links (all pairs of mentions in the same ground-truth cluster). It calculates
precision and recall for these pairwise linking decisions.

Question 5.1. [2 points] Explain in words and math, what precision and recall are.

Question 5.2. [3 points] Explain a context where you might prefer high-precision corefer-
ence decisions. When would you prefer high-recall coreference?

(Hint: think about different NLP applications like web search, machine translation,
dialogue understanding, etc.)

Question 5.3. [10 points] In the top level main function, we have:

testSettings[’windowWidth’] = 5

This parameter controls how many candidate antecedents the system looks at. It po-
tentially can tradeoff precision against recall.

For each of your three rule systems, run an experiment of sweeping through 10 dif-
ferent windowWidth parameters. Create a precision-recall plot of the results. It will have
three curves.

5

• X-axis: recall

• Y-axis: precision

• Each point is one run, from one rule system at one windowWidth setting.

• Please connect a line between points corresponding to runs of the same rule. There-
fore there will be three separate lines.

6 Extra Credit

Question 6.1. EXTRA CREDIT [5 points]
You’ll notice there’s a bug in the head token finding algorithm. It’s OK for “Adj Noun

Noun”, but it does “Noun Prep Noun” incorrectly. For extra credit, write a new head
token finder and use it in your implementations. Please put it within coref.py so we can
find it easily. Describe it in your writeup. Report its effect on coreference accuracy (if
any).

Question 6.2. EXTRA CREDIT (up to [10 points]): Try to make a better rule system with
more advanced features. Implement it in a function called “extraCreditRules”. Describe
it in your writeup and report its results. Ideas to try:

• Gender analysis, between pronouns (easy)

• Gender analysis, between a pronoun and a non-pronoun (harder: requires getting
gendered word/name lists from the internet)

• String match between the mentions. String match of head token.

Question 6.3. EXTRA CREDIT (up to [20 points]): Implement a machine learning-based
system, based on perceptron learning for antecedent selection. Add this to ml coref.py
(which uses perc.py) and submit your ml coref.py, and describe the features you created
and their results.

ml coref.py includes both rule-based and ML-based systems and you run it on the
commandline specifying which; see “python ml coref.py -h”. You will want to add fea-
tures to the feature extraction function. Note that the perceptron implementation we give
here works slightly differently than the HW2 one; in particular, you don’t have to append
the class label to the feature name. For example, to implement a grammatical number
matching feature, it might look like

key = "Plural:%s-%s" % (isPlural(curMent),isPlural(candMent))
features[key] = 1

meaning “Plural:True-True” that both the current and candidate are plural, “Plural:True-
False” meaning the current is plural but the candidate is not, etc.

6

	Introduction
	Overview
	Evaluating Coref Performance
	Code

	Look at the Data
	Mention Analysis Implementation
	Rule-Based Coreference
	Implementation

	Trading Off Precision and Recall
	Extra Credit

