Homework 1: Naive Bayes Classification

CS 585, UMass Ambherst, Fall 2015
Last updated Sept 14; due Sept 25

Overview

In this assignment you will build a Naive Bayes classifier that can classify movie reviews as either
positive or negative. This assignment also asks you to evaluate and analyze your system. The
goal is for you to begin to understand the Naive Bayes model, its strengths and weaknesses, how
its parameters affect its accuracy and how to use the model to do some exploratory data analysis.

Dataset

You’'ll be working with the IMDB Large Movie Review Dataset. The dataset includes 25,000 movie
reviews for training and 25,000 movie reviews for testing. The root directory of the dataset con-
tains a train directory and a test directory. Each of these directories has a pos and a neg direc-
tory containing positive and negative movie reviews respectively. Make sure that when training
your model you use the files in the train directory; make sure that when testing your model
you use the files in the test directory. A copy of the dataset is available on Piazza in the post
introducing this homework.

Running and Testing Code

We’ve partially implemented nb . py for you. Fill in the missing code as directed by this assign-
ment. The end of the file contains a runnable main function (run python nb.py). The code calls
produce_hwl_results () which you can continue to implement to produce your results. Feel
free to implement whatever other helper functions you like.

By default it is set to only use 20 documents: see the num_docs parameter for the training
function. This is to make it easy to very rapidly test code. For all results you report in your
solutions, always use the full dataset.

Deliverables and Due Date
You should submit a zipped directory named hwl_YOUR-USERNAME that contains:

¢ a document containing your responses to all of the questions in this assignment sheet (prefer-
ably in PDF format). Make sure to include any and all plots. If you have to write any of the
answers by hand, please scan them and include them in your write up.

e any code you wrote for this assignment. This should at least include your completed nb . py
file and may also include a completed produce_hwl_results () function.



¢ an estimate of the number of hours this assignment took you to complete (and any additional
feedback).

Your work must be submitted via moodle no later than midnight on Friday, September 25".

Our course’s collaboration policy is specified on the website.

1 Tokenization, Bag-of-words and Counting

Before building the model, you'll need to get the text into a representation that the model can
handle. Recall from lecture that the Naive Bayes model makes use of a bag-of-words representa-
tion. Naive Bayes is order-independent in that it doesn’t care about the order of the words in the
documents it classifies; it only keeps track of the number of each word type it encounters.

1. (5 pts) Implement the t okenize_doc function. This function should take a document (as a
string), split the document into tokens (for now just split on whitespace) and return a map-
ping (dictionary) of each token to the number of times it appears in the document. Every
token in the document should be lower-cased. Test your function afterwards by uncom-
menting the relevant lines in the produce_hwl_results function and running python

nb.py.

2. (5 pts) Implement the update_model function. Before you start, make sure to read the func-
tion comments so you know what to update. Also review the NaiveBayes class variables
to get a sense of which statistics are important to keep track of. Run the
trainmodel function with your new tokenization code. What is the size of the vocab-
ulary used in the training documents? You'll need to provide the path to the dataset you
downloaded to run the code.

3. (2.5 pts) Let’s begin to explore the count statistics stored by the update_model function.
Implement the top_n function. This function takes a sentiment class and a number, n, a
returns the top n words sorted by the number of times they appear in documents of that
class. What are the top 10 most common words in the positive class? What are the top 10
most common words in the negative class?

4. (2.5 pts) Will the top 10 words of the positive/negative classes help discriminate between
the two classes? Do you imagine that processing other English text will result in a similar
phenomenon?

2 Word Probabilities and Pseudocounts

The Naive Bayes model assumes that all features are conditionally independent given the class
label. For our purposes, this means that the probability of seeing a particular word in a document
with class label y is independent of the rest of the words in that document.

1. (5 pts) Implement the p_-word_given_label function. This function calculates P(w|y) (i.e.,
the probability of seeing word w in a document given the label of that document is y).

2. (5 pts) Use your function to compute the probability of seeing the word “fantastic” given
each sentiment label. Repeat the computation for the word “boring.” Which word has a
higher probability given the positive class? Which word has a higher probability given the
negative class? Is this what you would expect?
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3. (2.5 pts) What happens if you try to compute the probability of a word that exists in the
positive training data but not in the negative training data (and vice versa)? Explain what is
going wrong.

4. (5 pts) We can address this issue with psuedocounts. A psuedocount is a fixed amount added
to the count of each word stored in our model. Psuedocounts are used to help smooth
calculations involving words for which there is little data. Implement
p.word_given_label_and_psuedocount. Hint: look at the last slide of lecture 2 (slide
31).

3 Prior and Likelihood

As noted before, the Naive Bayes model assumes that all words in a document are independent of
one another given the document’s label. Because of this we can write the likelihood of a document
as:

n

P(war, s wanlya) = | [ P(wailya)
i1

where wy; is the i** word in document d and v, is the label of document d.

However, if a document has a lot of words, the likelihood will become extremely small and
we’ll encounter numerical underflow. Underflow is a common problem when dealing with prob-
abilistic models; if you are unfamiliar with it, you can get a brief overview on Wikipedia: https:
//en.wikipedia.org/wiki/Arithmetic_underflow. To deal with underflow, a common
transformation is to work in log-space.

1. (5 pts) Derive the log of the likelihood function above.

2. (5 pts) Implement the 1og_1ikelihood function. Hint: it should make calls to the
p-word_given_label_and_psuedocount function.

3. (2.5 pts) Implement the 1og_prior function. This function takes a class label and returns
the log of the fraction of the training documents that are of that label.

4 Normalization and the Decision Rule

Naive Bayes is a model that tells us how to compute the posterior probability of a document being
of some label (i.e., P(y4|wa)). Specifically, we do so using bayes rule:

P(ya)P(walya)
P(wa)

P(yalwa) =

In the previous section you implemented functions to compute both the log prior (log[P(yq4)])
and the log likelihood (log[P(w4|ya4)] )- Now, all your missing is the normalizer (P(wq)).

1. (5 pts) Derive the normalizer.

2. (5 pts) Derive the log of the posterior probability by taking the log of the equation above.
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3. (5 pts) One way to classify a document is to compute the unnormalized log posterior for both
labels and take the argmax (i.e., the label that yields the higher unnormalized log posterior).
The unnormalized log posterior is the sum of the log prior and the log likelihood of the
document. Why don’t we need to compute the log normalizer here?

4. (2.5 pts) Implement the unnormalized_log_posterior function.

5. (5 pts) Implement the classify function. The classify function should use the unnormal-
ized log posteriors but should not compute the normalizer.

5 Evaluation

After training our model and implementing the classify function we’d like to evaluate its ac-
curacy.

1. (10 pts) Implement the evaluate_classifier_accuracy function. This function should
classify all of the instances in the test set and report the fraction of instances that are classified
correctly. Report your classifier’s accuracy (with psuedocount parameter 1.0).

2. (5 pts) Experiment with the effect of varying the psuedocount parameter on classifier accu-
racy. Plot classifier accuracy as a function of the psuedocount parameter. We have provided
you with some sample code (the function plot_psuedocount_vs_accuracy) to help get
you started with plotting. You may want/need to modify this function.

3. (5 pts) Find a review that your classifier got wrong. Why do you think your system mis-
classified this example? What improvements could you make that may help your system
classify this example correctly?

6 Exploratory Analysis

Our trained model can be queried to do exploratory data analysis. We saw that the top 10 most
common words for each class were not very discriminative. Often times, a more descriminative
statistic is a word’s likelihood ratio. A word’s likelihood ratio is defined as

P =
LR(w) = (wly = pos)
P(wly = neg)
A word with LR = 5 is five times more likely to appear in a positive review than it is in a
negative review; a word with LR = 0.33 is one third as likely to appear in a positive review than
a negative review.

1. (2.5 pts) What is the range of the LR function?

2. (2.5 pts) Implement the 1ikelihod-ratio function. This function takes a word and com-
putes the likelihood ratio as defined above.

3. (2.5 pts) What are LR(“fantastic”) and LR(“boring”)? Compare these to the likelihood ratio
of some of the words in the top 10 lists generated above. For example, compare them to
LR(“the”) and LR(“t0”).



4. (5 pts) Explain how the word LRs are related to the Naive Bayes classifier model. If a word
has LR=1, does that mean the word is or is not important for the NB classifier? If a word has
LR very far from 1 (for example, LR=0.01, or LR=100) does that mean the word is or is not
important for the classifier? What does an LR=0.01 word indicate, as compared to a LR=100
word, for the operation of the classifier? Explain.

7 Bonus

Often times we care about multi-class classification rather than binary classification.

1. (6 pts) How would the count statistics that we are storing change if the model were modified
to support multi-class classification?

2. (2 pts) How would the normalizer change?

3. (2 pts) What would be the new decision rule (i.e., how would the classify function change)?
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