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® Syntactic NLP news today --

new release of “universal dependencies” for
multiple languages

http://universaldependencies.github.io/docs/
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Logistics

® [wo more homeworks

® Tomorrow: HW4 out, on coref. Due in 2 weeks
® [ater:a short HW5
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Do within-document coreference in the following document by assigning the mentions entity numbers:

[The government|___ said [today]___ [it]-__ ’s going to cut back on [[[the enormous number|___
of [people]___]___ who descended on [Yemen|___ to investigate [[the attack]___ on [the “ USS
Cole]___]___]-—_. 7 [[[So many people|]___ from [several agencies|]___|___]___ wanting to par-
ticipate that [the Yemenis|_—__ are feeling somewhat overwhelmed in [[their]-__ own country]___.
Investigators|—__ have come up with [[another theory]___ on how [the terrorists|.__ operated]___.
[ABC ’s]-__ John Miller]___ on [[the house]___ with [a view|]___]___. High on [[a hillside]-__, in
[a run - down section]|___ of [Aden]___]___]___, [[the house|]_-__ with [the blue door|___]___ has
[a perfect view|___ of [the harbor|___]___. [American and Yemeni investigators|___ believe [that
view|___ is what convinced [[a man]___ who used [[the name]___ [Abdullah]|___]___]___ to rent
the house|___ [several weeks|___ before [[the bombing|___ of [the “ USS Cole]___]___. 7 Early
4
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® |. Within-document coreference
® 7. Cross-document coreference
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Kinds of Reference

* Referring expressions

i )
— John Smith
— President Smith More common in

: > newswire, generally
— the Pr95’de”t harder in practice
— the company’s new executive

More interesting

* Free variables grammatical
— Smith saw his pay increase constraints,

more linguistic
theory, easierin
practice

* Bound variables
— The dancer hurt herself. "anaphora

resolution”
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® Types of coref subtasks
® |. Pronoun resolution (anaphora resolution)
® 2. Common nouns and names

® Typical pipeline
® |. ldentify candidate mentions
(ideally, referential mentions: exclude times, etc)

® 7. Cluster the candidate mentions
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Syntactic vs Semantic cues

® State-of-the-art coref uses first two




Syntactic vs Semantic cues

® Syntactic cues
® [John], a [lawyer], bought [himself] a book.
® [John],a [lawyer], bought [him] a book.

® State-of-the-art coref uses first two
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Syntactic vs Semantic cues

® Syntactic cues
® [John], a [lawyer], bought [himself] a book.
® [John],a [lawyer], bought [him] a book.

® Shallow semantic cues

® John saw Mary. She was eating salad.
® |ohn saw Mary. He was eating salad.

® State-of-the-art coref uses first two
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Syntactic vs Semantic cues

® Syntactic cues
® [John], a [lawyer], bought [himself] a book.
® [John],a [lawyer], bought [him] a book.
® Shallow semantic cues
® John saw Mary. She was eating salad.
® |ohn saw Mary. He was eating salad.
® Deeper semantics (world knowledge)
® The city council denied the demonstrators a
permit because they feared violence.
® The city council denied the demonstrators a
permit because they advocated violence.

® State-of-the-art coref uses first two
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Mention pair model

—

Hary Potter was a wizard. Lord Voldemort attempted to murder him.

® View gold standard as defining links between
mention pairs

® Think of as binary classification problem: take
random pairs as negative examples

® [ssues: many mention pairs. Also: have to resolve
local decisions into entities
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Antecedent selection model

[NULL]

;;//”’?;fzf AK?:;::ztttt§===iI.

Hary Potter was a wizard. Lord Voldemort attempted to murder him.

® View as antecedent selection problem: which previous mention
do | corefer with!?

® Makes most sense for pronouns, though can use model for all
expressions

® Process mentions left to right. For the n’th mention,
n-way multi-class classification problem:
antecedent is one of the n-I mentions to the left, or NULL.

® Features are asymmetric!

® Use alimited window for antecedent candidates
e.g. last 5 sentences (for news...)

® Score each candidate by a linear function of features.
Predict antecedent to be the highest-ranking candidate.

|0
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Antecedent selection model

[NULL]

Hary Potter was a wizard. Lord Voldemort attempted to murder him.

® Prediction: select the highest-scoring candidate as
the antecedent. (Though multiple may be ok.)

® Using for applications: take these links and form

entity clusters from connected components
[whiteboard]

® Training: simple way is to process the gold
standard coref chains (entity clusters) into positive
and negative links. Train binary classifier.
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Features for pronoun resolution




Features for pronoun resolution

® English pronouns grammar/semantic matching. Use as
features against antecedent candidate properties.
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Features for pronoun resolution

® English pronouns grammar/semantic matching. Use as
features against antecedent candidate properties.

® Number agreement
® he/she/it vs. they/them
¢ MATCH TO:s singular/plural nouns (“person”,”“people”)
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Features for pronoun resolution

® English pronouns grammar/semantic matching. Use as
features against antecedent candidate properties.
® Number agreement
® he/she/it vs. they/them
¢ MATCH TO:s singular/plural nouns (“person”,”“people”)
® Animacy/human-ness agreement
® it vs. he/she/him/her/his

e MATCHTO: name-or-not vs. “person” vs.“car”
(need lexical semantic DB: e.g. wordnet!?)
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Features for pronoun resolution

® English pronouns grammar/semantic matching. Use as
features against antecedent candidate properties.
® Number agreement
® he/she/it vs. they/them
¢ MATCH TO:s singular/plural nouns (“person”,”“people”)
® Animacy/human-ness agreement
® it vs. he/she/him/her/his

e MATCHTO: name-or-not vs. “person” vs.“car”
(need lexical semantic DB: e.g. wordnet!?)

® (Gender agreement
® he/him/his vs. she/her vs.it ---- MATCH TO: name gender?

e MATCHTO: gender of names, common nouns
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Features for pronoun resolution




Features for pronoun resolution

® Grammatical person - interacts with dialogue/
discourse structure

® first person: I/me
® second person: you/yall
® third person: he/she/it/they
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Features for pronoun resolution

® Grammatical person - interacts with dialogue/
discourse structure

® first person: I/me
® second person: you/yall
® third person: he/she/it/they

® Reflexives: bind to close subject (usually
forbidden)

® |ohn knew that Bob bought him a book.
® Bob knew that John bought himself a book.
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Other syntactic constraints

® High-precision patterns
® Predicate-Nominatives:“"X wasaY ...”
® Appositives: “X,aY,...”
® Role Appositives: “[president] [Lincoln]”

® Maybe you're happy with a high-precision, low-
recall system!?

Friday, November 20, 15



Structural features for pronoun resolution

* Preferences:

— Recency: More recently mentioned entities are more
likely to be referred to

went to a movie. went as well. He was not busy.

— Grammatical Role: Entities in the subject position is
more likely to be referred to than entities in the object
position

went to a movie with . He was not busy.
— Parallelism:

went with to a movie. went with him to a bar.
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Structural features for pronoun resolution

* Preferences:

— Verb Semantics: Certain verbs seem to bias whether
the subsequent pronouns should be referring to their
subjects or objects

telephoned Bill. He lost the laptop.
criticized Bill. He lost the laptop.

— Selectional Restrictions: Restrictions because of
semantics
parked his in the after driving it around for
hours.

* Encode all these and maybe more as features
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® How to combine information

® Features in supervised ML --

easiest to do, if you have training data
[Berkeley Coref -- Durrett and Klein]

® Rule-based approach. [Stanford DCoref, Lee et al.]
Typically, use a priority ordering:
® Go through each high-precision rule. If it fires: take it. Done.

® Else:filter out mentions based on semantic agreement and
forbidden syntactic configurations. Choose syntactically

closest mention.
® Other multistage approaches e.g. Bamman et al’s book-nlp:

® |.Cluster names based on string match / similarity
® 2. Resolve pronouns with antecedent model
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Features for non-pronoun resolution

® String match ... substring match ... edit distance

® “Abraham Lincoln” ...“President Lincoln”
e “Bill Clinton” ...“Hillary Clinton” ...”“Clinton”
e ‘Mr. Clinton”

® special-case name parsing (firsthame vs surname)?

® Head string match

® | saw a green house. The house was old.

® Many harder cases
e “Bill”..“the boy”
® “Novartis” ..."the company”
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Within-doc coref performance

® Have to evaluate: how well do system’s
predicted clusters match gold-standard clusters!?

® Current systems get /0-80ish % accuracy
depending on genre and how you view this

Friday, November 20, 15



DB/Cross-doc coref

Tasks Features

20
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DB/Cross-doc coref

Tasks Features

® Record linkage

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

20
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DB/Cross-doc coref

Tasks Features

® Record linkage

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

® Entity Linking
® DB Entities <=> mentions in
corpus
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DB/Cross-doc coref

Tasks Features

® Record linkage

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

® Entity Linking
® DB Entities <=> mentions in
corpus

® (Cross-doc coref

® Discover the entities: like
within-doc coref.
(Building your own entity DB)

® (Clustering problem across all
mentions in all docs!

20
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DB/Cross-doc coref

Tasks Features

® Record linkage ® Name matching is really important

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

® Entity Linking
® DB Entities <=> mentions in
corpus

® (Cross-doc coref

® Discover the entities: like
within-doc coref.
(Building your own entity DB)

® (Clustering problem across all
mentions in all docs!

20
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DB/Cross-doc coref

Tasks Features

® Record linkage ® Name matching is really important

e DBI of entities <=> DB2 of ® Fuzzy matching for
entities e.g. middle initials, multiple
® e.g. Match voter records against surnames (token level?)
Facebook profiles (Bond et al.) e.g. transliterations: Qaddafi,
® Entity Linking Gaddafi, el-Qaddafi (character
level)

® DB Entities <=> mentions in
corpus
® Cross-doc coref

® Discover the entities: like
within-doc coref.
(Building your own entity DB)

® (Clustering problem across all
mentions in all docs!

20
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DB/Cross-doc coref

Tasks

® Record linkage

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

® Entity Linking
® DB Entities <=> mentions in
corpus
® (Cross-doc coref

® Discover the entities: like
within-doc coref.
(Building your own entity DB)

® (Clustering problem across all
mentions in all docs!

Features

® Name matching is really important

® Fuzzy matching for
e.g. middle initials, multiple
surnames (token level?)
e.g. transliterations: Qaddafi,
Gaddafi, el-Qaddafi (character

level)

® |aro-Winkler edit distance:
especially customized for names
(at least, names typical for the

U.S. Census)

20
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DB/Cross-doc coref

Tasks Features

® Record linkage ® Name matching is really important

e DBI of entities <=> DB2 of ® Fuzzy matching for
entities e.g. middle initials, multiple
® e.g. Match voter records against surnames (token level?)
Facebook profiles (Bond et al.) e.g. transliterations: Qaddafi,
® Entity Linking Gaddafi, el-Qaddafi (character
level)

® DB Entities <=> mentions in
corpus ® Jaro-Winkler edit distance:

especially customized for names
® Discover the entities: like (at least, names typical for the
within-doc coref. U.S. Census)
(Building your own entity DB) ® TF-IDF weighting

® (Clustering problem across all
mentions in all docs!

® (Cross-doc coref

20
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DB/Cross-doc coref

Tasks

® Record linkage

® DBl of entities <=> DB2 of
entities

® e.g. Match voter records against
Facebook profiles (Bond et al.)

® Entity Linking
® DB Entities <=> mentions in
corpus
® (Cross-doc coref

® Discover the entities: like
within-doc coref.
(Building your own entity DB)

® (Clustering problem across all
mentions in all docs!

20

Features

® Name matching is really important

® Fuzzy matching for
e.g. middle initials, multiple
surnames (token level?)
e.g. transliterations: Qaddafi,
Gaddafi, el-Qaddafi (character

level)

® |aro-Winkler edit distance:
especially customized for names
(at least, names typical for the

U.S. Census)
® TF-IDF weighting
® Context

e.g. bag-of-words near the mention
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