
Syntactic Dependencies

CS 585, Fall 2015
Introduction to Natural Language Processing

http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Friday, November 20, 15

http://people.cs.umass.edu/~brenocon/inlp2015/
http://people.cs.umass.edu/~brenocon/inlp2015/

• today:

• syntactic dependencies

• start on coreference

• Longer distance graphs among words and
phrases in a text.

2

Friday, November 20, 15

Dependencies
(vs. Constituents)

3

Friday, November 20, 15

Disambiguation
with lexical information

4

• (P)CFG structural information doesn’t tell us much
about which is more likely

• Lexical knowledge might help? (Or other knowledge?)

• dessert -> with -> fork

• ate -> with -> fork

• Intuitively: a notion of modification or argument structure.

Prepositional attachment ambiguity

I ate some dessert with a fork.

S

NP

I

VP

V

ate

NP

NP

some dessert

PP

with a fork

S

NP

I

VP

V

ate

NP

some dessert

PP

with a fork

Both are grammatical; is syntax enough to disambiguate?

19

Friday, November 20, 15

Constits -> Deps

• Syntactic theory: Every phrase has a head word. It
carries the primary syntactic (semantic?) properties of
the phrase.

• Head rules: for every nonterminal in tree, choose one
of its children to be its “head”.

• Very simple example:

5

• NP -> Adj NP*

• NP -> NP* PP

• PP -> Prep* NP

Friday, November 20, 15

6

Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

+

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Head rules

S -> NP VP*
VP -> V* NP
NP -> Det NP*

Rules more complicated for
nonbinary expansions,
allowing multiple non-heads, e.g.
VP -> V* PP PP

Friday, November 20, 15

7

• Head rules can be used to add words into PCFG nonterminals
(“lexicalized PCFGs”)

• Helps a lot for attachment disambiguation
eat-with-fork vs dessert-with-fork

• Or -- why not use dependency graph directly?

• Grammatical relations are between individual words

• Graph is acyclic, connected, with a single root.

Constits -> Deps
Dependency Syntax

Connectedness, Acyclicity and Single-Head

I Intuitions:
I Syntactic structure is complete (Connectedness).
I Syntactic structure is hierarchical (Acyclicity).
I Every word has at most one syntactic head (Single-Head).

I Connectedness can be enforced by adding a special root node.

ROOT Economic news had little e↵ect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Recent Advances in Dependency Parsing 15(42)

Friday, November 20, 15

8

Adding Headwords to Trees

S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

+

S(questioned)

NP(lawyer)

DT(the)

the

NN(lawyer)

lawyer

VP(questioned)

Vt(questioned)

questioned

NP(witness)

DT(the)

the

NN(witness)

witness

Head rules

S -> NP VP*
VP -> V* NP
NP -> Det NP*

Graph conversion: (12.7.1):
the head of each non-head-child
is subordinate to the
head of the head-child.

Friday, November 20, 15

9

• Two ways to parse to dependencies:

• Run a constit parser, then run a (typically rule-
based) constit->deps converter

• Direct dependency parsing

• Dependencies useful for many applications

• Dependency annotations are available for more
languages ... perhaps better suited for a wider
variety of languages (e.g. free word order)

Constits -> Deps

Friday, November 20, 15

Dependency parse
• Edges between core words

• DAG (sometimes tree). Options to expand coordination, etc.

10

Bell

based

 partmod

distributes

nsubj

products

dobj

makes

nsubj

 conj_and

 dobj

Angeles

 prep_in

Los

 nn

electronic

 amod

building

amod

computer

amod

 conj_andconj_and

Figure 1: Graphical representation of the Stanford Dependencies for the sentence: Bell, based in Los
Angeles, makes and distributes electronic, computer and building products.

These dependencies map straightforwardly onto a directed graph representation, in which words in
the sentence are nodes in the graph and grammatical relations are edge labels. Figure 1 gives the graph
representation for the example sentence above.

Document overview: This manual provides documentation for the set of dependencies defined for
English. There is also a Stanford Dependency representation available for Chinese, but it is not further
discussed here. Starting in 2014, there has been work to extend Stanford Dependencies to be generally
applicable cross-linguistically. Initial work appeared in de Marneffe et al. (2014), and the current pro-
posal for Universal Dependencies (UD) can be found at http://universaldependencies.github.io/docs/.
This work is not (yet) reflected in this manual or in our software. For SD, Section 2 of the manual de-
fines the grammatical relations and the taxonomic hierarchy over them appears in section 3. This is then
followed by a description of the several variant dependency representations available, aimed at differ-
ent use cases (section 4), some details of the software available for generating Stanford Dependencies
(section 5), and references to further discussion and use of the SD representation (section 6).

2 Definitions of the Stanford typed dependencies

The current representation contains approximately 50 grammatical relations (depending slightly on the
options discussed in section 4). The dependencies are all binary relations: a grammatical relation holds
between a governor (also known as a regent or a head) and a dependent. The grammatical relations are
defined below, in alphabetical order according to the dependency’s abbreviated name (which appears in
the parser output). The definitions make use of the Penn Treebank part-of-speech tags and phrasal labels.

acomp: adjectival complement
An adjectival complement of a verb is an adjectival phrase which functions as the complement (like an
object of the verb).

2

Bell, based in Los Angeles,
makes and distributes
electronic, computer and building
products.

• X --relation--> Y graph edge
e.g. nsubj(makes, Bell)

• X: governor, head (parent...)

• Y: dependent, modifier, subordinate
(child...)

• Grammatical relations: see “Stanford
Dependencies Manual”

• nsubj: nominal subject

• dobj: direct object

• prep_X: prepositional argument

• amod: adjective modifier

• ...

• Using the graph: word-relation-word
edges, paths, subgraphs...

Friday, November 20, 15

Dependency paths

11

<--nsubj-- meet --prep--> with --pobj-->

“X meets with Y”

officials <--nsubj-- meet --prep--> with --pobj--> counterparts

British <--amod-- (NP) <--nsubj-- meet --prep--> with --pobj--> (NP) --pobj--> Iranian

• Information extraction with long(er)-distance
connections. Skip over modifiers and subclauses.

Friday, November 20, 15

Dependency paths

12

Feature type Left window NE1 Middle NE2 Right window
Lexical [] PER [was/VERB born/VERB in/CLOSED] LOC []
Lexical [Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [,]
Lexical [#PAD#, Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [, Missouri]

Syntactic [] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]

Table 3: Features for ‘Astronomer Edwin Hubble was born in Marshfield, Missouri’.

Astronomer Edwin Hubble was born in Marshfield , Missouri

lex-mod s pred mod pcomp-n lex-mod

inside

Figure 1: Dependency parse with dependency path from ‘Edwin Hubble’ to ‘Marshfield’ highlighted in
boldface.

5.2 Syntactic features

In addition to lexical features we extract a num-
ber of features based on syntax. In order to gener-
ate these features we parse each sentence with the
broad-coverage dependency parser MINIPAR (Lin,
1998).

A dependency parse consists of a set of words
and chunks (e.g. ‘Edwin Hubble’, ‘Missouri’,
‘born’), linked by directional dependencies (e.g.
‘pred’, ‘lex-mod’), as in Figure 1. For each
sentence we extract a dependency path between
each pair of entities. A dependency path con-
sists of a series of dependencies, directions and
words/chunks representing a traversal of the parse.
Part-of-speech tags are not included in the depen-
dency path.

Our syntactic features are similar to those used
in Snow et al. (2005). They consist of the conjunc-
tion of:

• A dependency path between the two entities
• For each entity, one ‘window’ node that is not part of

the dependency path

A window node is a node connected to one of the
two entities and not part of the dependency path.
We generate one conjunctive feature for each pair
of left and right window nodes, as well as features
which omit one or both of them. Thus each syn-
tactic row in Table 3 represents a single syntactic
feature.

5.3 Named entity tag features
Every feature contains, in addition to the content
described above, named entity tags for the two en-
tities. We perform named entity tagging using the
Stanford four-class named entity tagger (Finkel et
al., 2005). The tagger provides each word with a
label from {person, location, organization, miscel-
laneous, none}.

5.4 Feature conjunction
Rather than use each of the above features in the
classifier independently, we use only conjunctive
features. Each feature consists of the conjunc-
tion of several attributes of the sentence, plus the
named entity tags. For two features to match,
all of their conjuncts must match exactly. This
yields low-recall but high-precision features. With
a small amount of data, this approach would be
problematic, since most features would only be
seen once, rendering them useless to the classifier.
Since we use large amounts of data, even complex
features appear multiple times, allowing our high-
precision features to work as intended. Features
for a sample sentence are shown in Table 3.

6 Implementation

6.1 Text
For unstructured text we use the Freebase
Wikipedia Extraction, a dump of the full text of all
Wikipedia articles (not including discussion and

Feature type Left window NE1 Middle NE2 Right window
Lexical [] PER [was/VERB born/VERB in/CLOSED] LOC []
Lexical [Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [,]
Lexical [#PAD#, Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [, Missouri]

Syntactic [] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC []
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
lex�mod

,]
Syntactic [] PER [*

s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Edwin Hubble +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]
Syntactic [Astronomer +

lex�mod

] PER [*
s

was +
pred

born +
mod

in +
pcomp�n

] LOC [+
inside

Missouri]

Table 3: Features for ‘Astronomer Edwin Hubble was born in Marshfield, Missouri’.

Astronomer Edwin Hubble was born in Marshfield , Missouri

lex-mod s pred mod pcomp-n lex-mod

inside

Figure 1: Dependency parse with dependency path from ‘Edwin Hubble’ to ‘Marshfield’ highlighted in
boldface.

5.2 Syntactic features

In addition to lexical features we extract a num-
ber of features based on syntax. In order to gener-
ate these features we parse each sentence with the
broad-coverage dependency parser MINIPAR (Lin,
1998).

A dependency parse consists of a set of words
and chunks (e.g. ‘Edwin Hubble’, ‘Missouri’,
‘born’), linked by directional dependencies (e.g.
‘pred’, ‘lex-mod’), as in Figure 1. For each
sentence we extract a dependency path between
each pair of entities. A dependency path con-
sists of a series of dependencies, directions and
words/chunks representing a traversal of the parse.
Part-of-speech tags are not included in the depen-
dency path.

Our syntactic features are similar to those used
in Snow et al. (2005). They consist of the conjunc-
tion of:

• A dependency path between the two entities
• For each entity, one ‘window’ node that is not part of

the dependency path

A window node is a node connected to one of the
two entities and not part of the dependency path.
We generate one conjunctive feature for each pair
of left and right window nodes, as well as features
which omit one or both of them. Thus each syn-
tactic row in Table 3 represents a single syntactic
feature.

5.3 Named entity tag features
Every feature contains, in addition to the content
described above, named entity tags for the two en-
tities. We perform named entity tagging using the
Stanford four-class named entity tagger (Finkel et
al., 2005). The tagger provides each word with a
label from {person, location, organization, miscel-
laneous, none}.

5.4 Feature conjunction
Rather than use each of the above features in the
classifier independently, we use only conjunctive
features. Each feature consists of the conjunc-
tion of several attributes of the sentence, plus the
named entity tags. For two features to match,
all of their conjuncts must match exactly. This
yields low-recall but high-precision features. With
a small amount of data, this approach would be
problematic, since most features would only be
seen once, rendering them useless to the classifier.
Since we use large amounts of data, even complex
features appear multiple times, allowing our high-
precision features to work as intended. Features
for a sample sentence are shown in Table 3.

6 Implementation

6.1 Text
For unstructured text we use the Freebase
Wikipedia Extraction, a dump of the full text of all
Wikipedia articles (not including discussion and

Task: get features which describe
the “X was born in Y” semantic relation

• Information extraction with long(er)-distance
connections. Skip over modifiers and subclauses.

Friday, November 20, 15

Dependency paths

• Rule-based semantic relation extraction

13

Character evidence
Typed dependency
information anchored
on each character. Luke watches as Vader kills Kenobi

agent agent patient

Luke runs away

agent

agent patient

The soldiers shoot at him

Friday, November 20, 15

Dependency paths

• Rule-based semantic relation extraction

13

Character evidence
Typed dependency
information anchored
on each character. Luke watches as Vader kills Kenobi

agent agent patient

Luke runs away

agent

agent patient

The soldiers shoot at him

• e.g. assume a verb’s subjects
and objects denote
arguments in an event

Friday, November 20, 15

Dependency paths

• Rule-based semantic relation extraction

13

Character evidence
Typed dependency
information anchored
on each character. Luke watches as Vader kills Kenobi

agent agent patient

Luke runs away

agent

agent patient

The soldiers shoot at him

• e.g. assume a verb’s subjects
and objects denote
arguments in an event

• But gets complicated
(syntax-semantics interface)

Friday, November 20, 15

Dependency paths

• Rule-based semantic relation extraction

13

Character evidence
Typed dependency
information anchored
on each character. Luke watches as Vader kills Kenobi

agent agent patient

Luke runs away

agent

agent patient

The soldiers shoot at him

• e.g. assume a verb’s subjects
and objects denote
arguments in an event

• But gets complicated
(syntax-semantics interface)

• “the Death Star’s
destruction”

Friday, November 20, 15

Should you use a parser in your project?

• Dependency n-grams as features

• e.g. dep bigrams (word, REL, word)

• Parsers performance and efficiency varies

• “Shift-reduce” or “incremental” dependency
parsers: tend to be fastest, currently

• Performance: is your data similar to newswire text?
(The usual training data)

14

Friday, November 20, 15

