
Syntax intro

CS 585, Fall 2015
Introduction to Natural Language Processing

http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

[some slides borrowed from Percy Liang]

Sunday, November 22, 15

http://people.cs.umass.edu/~brenocon/inlp2015/
http://people.cs.umass.edu/~brenocon/inlp2015/

• What linguistic representations do we want?

2

Sunday, November 22, 15

Dependency parse trees?

The boy wants to go to New York City.

9

Sunday, November 22, 15

Frames?

Cynthia sold the bike to Bob for $200

SELLER PREDICATE GOODS BUYER PRICE

10

Sunday, November 22, 15

Logical forms?

What is the largest city in California?

argmax(�x.city(x) ^ loc(x, CA),�x.population(x))

11

Sunday, November 22, 15

Levels of linguistic analyses

natural language utterance

16

Sunday, November 22, 15

Levels of linguistic analyses

Syntax: what is grammatical?

natural language utterance

16

Sunday, November 22, 15

Levels of linguistic analyses

Semantics: what does it mean?

Syntax: what is grammatical?

natural language utterance

16

Sunday, November 22, 15

Levels of linguistic analyses

Pragmatics: what does it do?

Semantics: what does it mean?

Syntax: what is grammatical?

natural language utterance

16

Sunday, November 22, 15

Analogy with programming languages

Syntax: no compiler errors

Semantics: no implementation bugs

Pragmatics: implemented the right algorithm

17

Sunday, November 22, 15

Analogy with programming languages

Syntax: no compiler errors

Semantics: no implementation bugs

Pragmatics: implemented the right algorithm

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

17

Sunday, November 22, 15

Analogy with programming languages

Syntax: no compiler errors

Semantics: no implementation bugs

Pragmatics: implemented the right algorithm

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

Same syntax, di↵erent semantics (1 and 1.5):

3 / 2 (Python 2.7) 6, 3 / 2 (Python 3)

17

Sunday, November 22, 15

Analogy with programming languages

Syntax: no compiler errors

Semantics: no implementation bugs

Pragmatics: implemented the right algorithm

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

Same syntax, di↵erent semantics (1 and 1.5):

3 / 2 (Python 2.7) 6, 3 / 2 (Python 3)

Good semantics, bad pragmatics:

correct implementation of deep neural network

for estimating coin flip prob.

17

Sunday, November 22, 15

Constituency

• Group of words that behaves like a single unit

• e.g. “Noun Phrase” could be any of

14

Section 12.2. Context-Free Grammars 3

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

How do we know that these words group together (or “form constituents”)? One
piece of evidence is that they can all appear in similar syntactic environments, for
example before a verb.

three parties from Brooklyn arrive. . .
a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. . .
they sit

But while the whole noun phrase can occur before a verb, this is not true of each of
the individual words that make up a noun phrase. The following are not grammatical
sentences of English (recall that we use an asterisk (*) to mark fragments that are not
grammatical English sentences):

*from arrive. . . *as attracts. . .
*the is. . . *spot is. . .

Thus to correctly describe facts about the ordering of these words in English, we must
be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are called preposed orPREPOSED

postposed constructions. For example, the prepositional phrase on September sev-POSTPOSED

enteenth can be placed in a number of different locations in the following examples,
including preposed at the beginning, and postposed at the end:

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenth from Atlanta to Denver
I’d like to fly from Atlanta to Denver on September seventeenth

But again, while the entire phrase can be placed differently, the individual words
making up the phrase cannot be:

*On September, I’d like to fly seventeenth from Atlanta to Denver
*On I’d like to fly September seventeenth from Atlanta to Denver
*I’d like to fly on September from Atlanta to Denver seventeenth

Section 12.6 will give other motivations for context-free grammars based on their
ability to model recursive structures. See Radford (1988) for further examples of
groups of words behaving as a single constituent.

12.2 CONTEXT-FREE GRAMMARS

The most commonly used mathematical system for modeling constituent structure in
English and other natural languages is theContext-FreeGrammar, orCFG. Context-CFG

free grammars are also called Phrase-Structure Grammars, and the formalism is
equivalent to what is also called Backus-Naur Form or BNF. The idea of basing

• Commonalities in behavior (allowable left/right
contexts?)

Sunday, November 22, 15

Context Free Grammars

• A formal grammar

• 1. defines (“generates”) a set of strings

• 2. can be used to analyze a string: is it in the set or not?

• Theoretical goal: What is the grammar for all of
English?

• CFG for noun phrases

15

4 Chapter 12. Formal Grammars of English

a grammar on constituent structure dates back to the psychologist Wilhelm Wundt
(1900), but was not formalized until Chomsky (1956) and, independently, Backus
(1959).

A context-free grammar consists of a set of rules or productions, each of whichRULES

expresses the ways that symbols of the language can be grouped and ordered together,
and a lexicon of words and symbols. For example, the following productions expressLEXICON

that a NP (or noun phrase), can be composed of either a ProperNoun or a determinerNP

(Det) followed by a Nominal; a Nominal can be one or more Nouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the previous
rules with others like the following which express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols that
correspond to words in the language (“the”, “nightclub”) are called terminal symbols;TERMINAL

the lexicon is the set of rules that introduce these terminal symbols. The symbols that
express clusters or generalizations of these are called non-terminals. In each context-NON-TERMINAL

free rule, the item to the right of the arrow (→) is an ordered list of one or more
terminals and non-terminals, while to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. Notice that in the lexicon, the non-
terminal associated with each word is its lexical category, or part-of-speech, which we
defined in Ch. 5.

A CFG can be thought of in two ways: as a device for generating sentences, and
as a device for assigning a structure to a given sentence. We saw this same dualism in
our discussion of finite-state transducers in Ch. 3. As a generator, we can read the→
arrow as “rewrite the symbol on the left with the string of symbols on the right”.
So starting from the symbol: NP,
we can use rule 12.2 to rewrite NP as: Det Nominal
and then rule 12.2: Det Noun
and finally via rules 12.2 and 12.2 as: a flight
We say the string a flight can be derived from the non-terminal NP. Thus a CFGDERIVED

can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parseDERIVATION

tree (commonly shown inverted with the root at the top). Fig. 12.1 shows the treePARSE TREE

representation of this derivation.
In the parse tree shown in Fig. 12.1 we say that the node NP immediately dom-

inates the node Det and the node Nom. We say that the node NP dominates all theIMMEDIATELY
DOMINATES

DOMINATES nodes in the tree (Det, Nom, Noun, a, flight).
The formal language defined by a CFG is the set of strings that are derivable from

the designated start symbol. Each grammar must have one designated start symbol,START SYMBOL

4 Chapter 12. Formal Grammars of English

a grammar on constituent structure dates back to the psychologist Wilhelm Wundt
(1900), but was not formalized until Chomsky (1956) and, independently, Backus
(1959).

A context-free grammar consists of a set of rules or productions, each of whichRULES

expresses the ways that symbols of the language can be grouped and ordered together,
and a lexicon of words and symbols. For example, the following productions expressLEXICON

that a NP (or noun phrase), can be composed of either a ProperNoun or a determinerNP

(Det) followed by a Nominal; a Nominal can be one or more Nouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the previous
rules with others like the following which express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols that
correspond to words in the language (“the”, “nightclub”) are called terminal symbols;TERMINAL

the lexicon is the set of rules that introduce these terminal symbols. The symbols that
express clusters or generalizations of these are called non-terminals. In each context-NON-TERMINAL

free rule, the item to the right of the arrow (→) is an ordered list of one or more
terminals and non-terminals, while to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. Notice that in the lexicon, the non-
terminal associated with each word is its lexical category, or part-of-speech, which we
defined in Ch. 5.

A CFG can be thought of in two ways: as a device for generating sentences, and
as a device for assigning a structure to a given sentence. We saw this same dualism in
our discussion of finite-state transducers in Ch. 3. As a generator, we can read the→
arrow as “rewrite the symbol on the left with the string of symbols on the right”.
So starting from the symbol: NP,
we can use rule 12.2 to rewrite NP as: Det Nominal
and then rule 12.2: Det Noun
and finally via rules 12.2 and 12.2 as: a flight
We say the string a flight can be derived from the non-terminal NP. Thus a CFGDERIVED

can be used to generate a set of strings. This sequence of rule expansions is called a
derivation of the string of words. It is common to represent a derivation by a parseDERIVATION

tree (commonly shown inverted with the root at the top). Fig. 12.1 shows the treePARSE TREE

representation of this derivation.
In the parse tree shown in Fig. 12.1 we say that the node NP immediately dom-

inates the node Det and the node Nom. We say that the node NP dominates all theIMMEDIATELY
DOMINATES

DOMINATES nodes in the tree (Det, Nom, Noun, a, flight).
The formal language defined by a CFG is the set of strings that are derivable from

the designated start symbol. Each grammar must have one designated start symbol,START SYMBOL

• Was J&K a CFG? How to add adjectives?

Sunday, November 22, 15

16

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Rules Lexicon

Example: Book that flight

Sentence CFG

Sunday, November 22, 15

