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How to evaluate an NLP system!?

® Many tasks: Classification .. Translation .. etc.

® Extrinsic Evaluation
Incorporate NLP system into downstream task

® |ntrinsic Evaluation

® Automatic Evaluation

® Does system agree with pre-judged examples!?

® Human Post-hoc Evaluation
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® (Questions
® What metrics to use?

® How to deal with complex outputs like
translations?

® Are the human judgments ...
® .. measuring something real?
® .. reliable?
® |s the sample of texts sufficiently representative?

® How reliable or certain are the results?
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Classification metrics
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Confusion matrix

A Precision = TP/ (TP + FP)
ctual Actual h
S Non_m / = P( correct | predpos)

= 5000 / 5007
Pred. S ag 5000\ /
P (TP) (False Pos)

]
Pred. X\I 00 400000
Non-Spam alse Ne (TN)

Recall =TP / (TP + FN)
= P( correct | actualpos)

=5000/5100

5 http://brenocon.com/confusion_matrix_diagrams.pdf
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Confusion matrix

Precision = TP/ (TP + FP)
Actual Actual N
Spam__| Non-Spam / = P( correct | predpos)
= 5000 / 5007
Pred. Spag >000 / >
(TP) (False Pos)
— ® You can also just look at the
Pred. |()O 400000 confusion matrix!
Non-Spam | (Kalse Ne (TN) ® Precision and Recall are metrics for

binary classification.

® F-score: harmonic mean of P and R.
Cares about getting both

Recall =TP/ (TP + FN) moderately high.
= P( correct | actualpos)

=5000/5100

5 http://brenocon.com/confusion_matrix_diagrams.pdf
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Trade off Prec vs. Recall

Decide“1”if p(y = 1|z) >t .. could vary threshold t

Confidence level (3 of Turker vote for YES)
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http//blog.doloreslabs.com/?p=61
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Trade off Prec vs. Recall

1.0

©
o

-
o))
1 1

Precision

O
~
|

O
N
1

O
O

0.2 0.4 0.6 0.
Recall

O
o




MT Evaluation




MT Evaluation

* Manual (the best!?):

— SSER (subjective sentence error rate)

— Correct/Incorrect

— Adequacy and Fluency (5 or 7 point scales)
— Error categorization

— Comparative ranking of translations

* Testing in an application that uses MT as one sub-
component

— E.g., question answering from foreign language documents
« May not test many aspects of the translation (e.g., cross-lingual IR)

 Automatic metric:

— WER (word error rate) — why problematic?
— BLEU (Bilingual Evaluation Understudy)
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BLEU Evaluation Metric

(Papineni et al, ACL-2002)

Reference (human) translation:
The U.S. island of Guam is
maintaining a high state of alert
after the Guam airport and its
offlces both received én e-mail
from someone calllng himself the
Saugli Arabian Osama bin Laden
and t-hreatenlng a.blologlcaI/
chenlical attack a'galnst public

places such as the airport .

Machine transiation:  :
The Anterigan [?] international
airport énd its the ofﬁce.all
recelves‘. one calls self the sand
Arab rich business [?] and so on
electroni¢ mail , which sends out ;
The threat will be able after public
place and-so on the airport to start
the biochémistry attack , [?] highly
alerts after the maintenance.

N-gram precision (score is between 0 & 1)

— What percentage of machine n-grams can
be found in the reference translation?

— An n-gram is an sequence of n words

— Not allowed to match same portion of
reference translation twice at a certain n-
gram level (two MT words airport are only
correct if two reference words airport; can’t
cheat by typing out “the the the the the”)

— Do count unigrams also in a bigram for
unigram precision, etc.

Brevity Penalty

Can't just type out single word
“the” (precision 1.0!)

It was thought quite hard to “game” the system
(i.e., to find a way to change machine output so
that BLEU goes up, but quality doesn't)
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BLEU Evaluation Metric

(Papineni et al, ACL-2002)

Reference (human) translation:
The U.S. island of Guam is
maintaining a high state of alert
after the Guam airport and its
offlces both received én e-mail
from someone calllng himself the
Saugli Arabian Osama bin Laden
and threatenlng a.blologlcaI/
chenlical attack a'galnst public
places such as the airport .

Machine transiation:
The Anterigan [?] interational
airport énd its the ofﬁcé all
recelves‘. one calls self the sand
Arab rich business [?] and so on
electroni¢ mail , which sends out ;
The threat will be able gfter public
place and-so on the airport to start
the biochémistry attack , [?] highly
alerts after the maintenance.

BLEU is a weighted geometric mean, with a
brevity penalty factor added.

* Note that it's precision-oriented
BLEU4 formula

(counts n-grams up to length 4)

exp (1.0 * log p1 +
0.5 *log p2 +
0.25 *log p3 +
0.125 * log p4 —
max(words-in-reference / words-in-machine — 1, 0)

p1 = 1-gram precision
P2 = 2-gram precision
P3 = 3-gram precision
P4 = 4-gram precision

Note: only works at corpus level (zeroes Kkill it);
there’s a smoothed variant for sentence-level
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Multiple Reference Translations

Reference translation 1: Reference translation 2:

(The)U.S. island of Guam is maintaining Guam (nternational Airport and its)
a high_state of alert(after the)Guam '
airport @nd)its offices both\received an

Machine transiation: %
e Arierican [?] (interhational airport] |
AN

TS
e(biachemistry| ]

alerts a the

ighl

Reference translation 3:
The US International Airport of GUz

officereceived an.email from Mr. Bin
from a self-claimed Arabi ionai Laden and other rich)businessman
from Saudi Arabia . They said there
launch a biochemical atjz would be (biochemistry Jair raid to Guam

' Airport and other public places . Guam
needs to be in high precaution about
this matter .

authority has been pn)alert .
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Initial results showed that BLEU predicts
human judgments well
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Human Judgments

slide from G. Doddington (NIST)
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® (Questions
® VWhat metrics to use!

® How to deal with complex outputs like translations?

® Are the human judgments ...
® ... measuring something real?
® ...reliable?

® Is the sample of texts sufficiently
representative?

® How reliable or certain are the results?

Tuesday, November 3, 15



Pesky Humans

® |satask“real”?

® |nterannotator agreement rate
® Accuracy of one human against the other
® Other metrics:“Cohen’s kappa”

® normalizes for most-common-baseline issues

® Human performance at task -- upper bound on
machine performance!

® What are we trying to measure!
e [EXERCISE]
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® stopped here
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Significance Testing




® (Questions
® Are the human judgments ...

® .. measuring something real?

® .. reliable?

® Is the sample of texts sufficiently
representative?

® How reliable or certain are the results?
® How to deal with complex outputs like translations?
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® Representativeness

® |s it from the right distribution! Correct domain/
genre that we care about!?

® Are there enough examples that we can trust it?
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® Representativeness

® |s it from the right distribution! Correct domain/
genre that we care about!?

® Are there enough examples that we can trust it?

® First Q is a judgment call
® Second Q is a statistical question
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Statistical “Significance”

® Assume data was drawn from a greater
population.

® [f we were to take a new sample, how much
would data differ?
® Or:how much would a statistic of that data differ?

® “Confidence interval”
(better name: Uncertainty Interval)

20
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Bootstrap test
® [blackboard]

® |nputs
® Oiriginal data size N
® Test statistic: stat(data). e.g.
® accuracy (numeric)
® systeml| better than system2? (boolean)
® Algorithm
® For each of 10,000 replications:

® Draw samp: a sample with replacement from the original data, size N
(Many of the original examples will not be in sample)

® (Calculate stat(samp)
® Save all 10,000 stat(samp) values. Then analyze
® Boolean: Calculate proportion that are true

® Numeric: Calculate mean and standard deviation, and/or plot histogram

21
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Bootstrap test

® |.Binary null hypothesis (7.2 |M 3ed)

® p-value: Proportion of replications where
the null hypo is true

® ). Confidence interval (this lecture)
® Numeric statistic: e.g. accuracy rate

® The “normal approx’” bootstrap Cl:
95% Cl = [mean +/- 2*stdev]

22
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Paired tests

® Single dataset. Compare system | vs system 2

23
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Power Analysis

® How much data do we have to collect!?

® Power Analysis: given how big an effect you want
to measure, that implies how big N should be

® How to implement

® Make fake dataset size N, run the bootstrap. Look
at whether differences can be detected

e [IPYNB DEMO]
® Off-the-shelf formulas, e.g. R power.t.test()

® Rules of thumb:
http://www.nrcse.washington.edu/research/struts/
chapter2.pdf

24
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