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NLP news of the day

The system helps Mountain View, 
California-based Google deal with 
the 15 percent of queries a day it 
gets which its systems have never 
seen before, he said. For example, 
it’s adept at dealing with ambiguous 
queries, like, “What’s the title of the 
consumer at the highest level of a 
food chain?” And RankBrain’s usage 
of AI means it works differently 
than the other technologies in the 
search engine.
“The other signals, they’re all based 
on discoveries and insights that 
people in information retrieval have 
had, but there’s no learning,” 
Corrado said.

2http://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
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Graders at work

• Midterms back on Thursday

• Project feedback: by tomorrow

• HW2 still underway (sorry!)
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Machine translation

• Intro

• Classic MT

• Statistical MT

• Training

• Evaluation

4
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MT is amazing
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MT is hard

6

• Word order, word meanings
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MT is hard

• Word meaning:
many-to-many and context dependent

7

• Translation itself is hard: metaphors, cultural 
references, etc.
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MT goals

• Motivation: Human translation is expensive

• High precision translation

• Rough translation

• Assistance for human translators

• Comparison: bilingual dictionary

8
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MT: major types
• Rule-based transfer

• Manually program lexicons/rules

• SYSTRAN (AltaVista Babelfish)

• Statistical MT:

• Learn translation rules from data,
search for high-scoring translation outputs

• Phrase or syntactic transformations

• Key research in the early 90s

• Google Translate (mid 00s)

• Moses, cdec  (open-source)

• [Active current work: Semantic MT? Neural MT?]

9
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Vauquois Triangle
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Direct (word-based) transfer
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Section 25.2. Classical MT & the Vauquois Triangle 11

shallow morphological analysis; each source word is directly mapped onto some target
word. Direct translation is thus based on a large bilingual dictionary; each entry in the
dictionary can be viewed as a small program whose job is to translate one word. After
the words are translated, simple reordering rules can apply, for example for moving
adjectives after nouns when translating from English to French.

The guiding intuition of the direct approach is that we translate by incrementally
transforming the source language text into a target language text. While the pure
direct approach is no longer used, this transformational intuition underlies all modern
systems, both statistical and non-statistical.

Figure 25.5 Direct machine translation. The major component, indicated by size here,
is the bilingual dictionary.

Let’s look at a simplified direct system on our first example, translating from En-
glish into Spanish:

(25.11) Mary didn’t slap the green witch
Maria
Mary

no
not

dió
gave

una
a

bofetada
slap

a
to

la
the

bruja
witch

verde
green

The four steps outlined in Fig. 25.5 would proceed as shown in Fig. 25.6.
Step 2 presumes that the bilingual dictionary has the phrase dar una bofetada a

as the Spanish translation of English slap. The local reordering step 3 would need
to switch the adjective-noun ordering from green witch to bruja verde. And some
combination of ordering rules and the dictionary would deal with the negation and
past tense in English didn’t. These dictionary entries can be quite complex; a sample
dictionary entry from an early direct English-Russian system is shown in Fig. 25.7.

While the direct approach can deal with our simple Spanish example, and can han-
dle single-word reorderings, it has no parsing component or indeed any knowledge
about phrasing or grammatical structure in the source or target language. It thus cannot
reliably handle longer-distance reorderings, or those involving phrases or larger struc-
tures. This can happen even in languages very similar to English, like German, where
adverbs like heute (‘today’) occur in different places, and the subject (e.g., die grüne
Hexe) can occur after the main verb, as shown in Fig. 25.8.

Input: Mary didn’t slap the green witch
After 1: Morphology Mary DO-PAST not slap the green witch
After 2: Lexical Transfer Maria PAST no dar una bofetada a la verde bruja
After 3: Local reordering Maria no dar PAST una bofetada a la bruja verde
After 4: Morphology Maria no dió una bofetada a la bruja verde

Figure 25.6 An example of processing in a direct system
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Syntactic transfer
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structural knowledge into our MT models. We’ll flesh out this intuition in the next
section.

25.2.2 Transfer
As Sec. 25.1 illustrated, languages differ systematically in structural ways. One strat-
egy for doing MT is to translate by a process of overcoming these differences, altering
the structure of the input to make it conform to the rules of the target language. This
can be done by applying contrastive knowledge, that is, knowledge about the differ-CONTRASTIVE

KNOWLEDGE

ences between the two languages. Systems that use this strategy are said to be based
on the transfer model.TRANSFER MODEL

The transfer model presupposes a parse of the source language, and is followed
by a generation phase to actually create the output sentence. Thus, on this model,
MT involves three phases: analysis, transfer, and generation, where transfer bridges
the gap between the output of the source language parser and the input to the target
language generator.

It is worth noting that a parse for MT may differ from parses required for other pur-
poses. For example, suppose we need to translate John saw the girl with the binoculars
into French. The parser does not need to bother to figure out where the prepositional
phrase attaches, because both possibilities lead to the same French sentence.

Once we have parsed the source language, we’ll need rules for syntactic transfer
and lexical transfer. The syntactic transfer rules will tell us how to modify the source
parse tree to resemble the target parse tree.

Nominal

Adj Noun

⇒ Nominal

Noun Adj

Figure 25.10 A simple transformation that reorders adjectives and nouns

Figure 25.10 gives an intuition for simple cases like adjective-noun reordering; we
transform one parse tree, suitable for describing an English phrase, into another parse
tree, suitable for describing a Spanish sentence. These syntactic transformations areSYNTACTIC

TRANSFORMATIONS

operations that map from one tree structure to another.
The transfer approach and this rule can be applied to our example Mary did not

slap the green witch. Besides this transformation rule, we’ll need to assume that the
morphological processing figures out that didn’t is composed of do-PAST plus not, and
that the parser attaches the PAST feature onto the VP. Lexical transfer, via lookup in
the bilingual dictionary, will then remove do, change not to no, and turn slap into the
phrase dar una bofetada a, with a slight rearrangement of the parse tree, as suggested
in Fig. 25.11.

For translating from SVO languages like English to SOV languages like Japanese,
we’ll need even more complex transformations, for moving the verb to the end, chang-
ing prepositions into postpositions, and so on. An example of the result of such rules is
shown in Fig. 25.12. An informal sketch of some transfer rules is shown in Fig. 25.13.

Tuesday, October 27, 15



Interlingua

13

• More like classic logic-based AI

• Works in narrow domains

• Broad domain currently fails

• Coverage: Knowledge representation for all possible semantics?

• Can you parse to it?

• Can you generate from it?

“Mary did not slap the green witch”
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Rules are hard

• Coverage

• Complexity (context dependence)

• Maintenance

14
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Statistical MT

• MT as ML:   Translation is something people do 
naturally.  Learn rules from data?

• Parallel data:  (source, target) text pairs

• E.g. 20 million words of European Parliament 
proceedings
http://www.statmt.org/europarl/

15
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Codebreaking
P(plaintext | encrypted text) / P(encrypted text | plaintext) P(plaintext)

Speech recognition
P(text | acoustic signal) / P(acoustic signal | text) P(text)

Optical character recognition
P(text | image) / P(image | text) P(text)

Machine translation
P(target text | source text) / P(source text | target text) P(target text)

Original
text

Hypothesized transmission process

Inference problem

Observed
text

Noisy channel model

Spelling correction
P(target text | source text) / P(source text | target text) P(target text)
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Codebreaking
P(plaintext | encrypted text) / P(encrypted text | plaintext) P(plaintext)

Speech recognition
P(text | acoustic signal) / P(acoustic signal | text) P(text)

Optical character recognition
P(text | image) / P(image | text) P(text)

Machine translation
P(target text | source text) / P(source text | target text) P(target text)

Original
text

Hypothesized transmission process

Inference problem

Observed
text

Noisy channel model

Spelling correction
P(target text | source text) / P(source text | target text) P(target text)

One naturally wonders if the problem of translation could 
conceivably be treated as a problem in cryptography. When 
I look at an article in Russian, I say: ‘This is really written in 
English, but it has been coded in some strange symbols. I 

will now proceed to decode.’

-- Warren Weaver (1955)

Tuesday, October 27, 15



Statistical MT

17
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Statistical MT

18

Historical notes: http://cs.jhu.edu/~post/bitext/

• Pioneered at IBM, early 1990s
(Forerunner of 90s-era statistical revolution in NLP)
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Statistical MT

19

"Every time I fire a linguist,
the performance of the speech recognizer goes up"
[Fred Jelinek]

• Pioneered at IBM, early 1990s
(Forerunner of 90s-era statistical revolution in NLP)

• Noisy channel model borrowed from
speech recognition processing
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Problem formulation

20
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18 Chapter 25. Machine Translation

This is an issue to which philosophers of translation have given a lot of thought.
The consensus seems to be, sadly, that it is impossible for a sentence in one language to
be a translation of a sentence in other, strictly speaking. For example, one cannot really
translate Hebrew adonai roi (‘the Lord is my shepherd’) into the language of a culture
that has no sheep. On the one hand, we can write something that is clear in the target
language, at some cost in fidelity to the original, something like the Lord will look after
me. On the other hand, we can be faithful to the original, at the cost of producing
something obscure to the target language readers, perhaps like the Lord is for me like
somebody who looks after animals with cotton-like hair. As another example, if we
translate the Japanese phrase fukaku hansei shite orimasu, as we apologize, we are not
being faithful to the meaning of the original, but if we produce we are deeply reflecting
(on our past behavior, and what we did wrong, and how to avoid the problem next
time), then our output is unclear or awkward. Problems such as these arise not only for
culture-specific concepts, but whenever one language uses a metaphor, a construction,
a word, or a tense without an exact parallel in the other language.

So, true translation, which is both faithful to the source language and natural as
an utterance in the target language, is sometimes impossible. If you are going to go
ahead and produce a translation anyway, you have to compromise. This is exactly
what translators do in practice: they produce translations that do tolerably well on both
criteria.

This provides us with a hint for how to do MT.We can model the goal of translation
as the production of an output that maximizes some value function that represents the
importance of both faithfulness and fluency. Statistical MT is the name for a class
of approaches that do just this, by building probabilistic models of faithfulness and
fluency, and then combining these models to choose the most probable translation. If
we chose the product of faithfulness and fluency as our quality metric, we could model
the translation from a source language sentence S to a target language sentence T̂ as:

best-translation T̂ = argmaxT faithfulness(T,S) fluency(T)
This intuitive equation clearly resembles the Bayesian noisy channel model we’ve

seen in Ch. 5 for spelling and Ch. 9 for speech. Let’s make the analogy perfect and
formalize the noisy channel model for statistical machine translation.

First of all, for the rest of this chapter, we’ll assume we are translating from a
foreign language sentence F = f1, f2, ..., fm to English. For some examples we’ll use
French as the foreign language, and for others Spanish. But in each case we are trans-
lating into English (although of course the statistical model also works for translating
out of English). In a probabilistic model, the best English sentence Ê = e1,e2, ...,el
is the one whose probability P(E|F) is the highest. As is usual in the noisy channel
model, we can rewrite this via Bayes rule:

Ê = argmaxEP(E|F)

= argmaxE
P(F|E)P(E)

P(F)

= argmaxEP(F|E)P(E)(25.13)

We can ignore the denominator P(F) inside the argmax since we are choosing the best
English sentence for a fixed foreign sentence F , and hence P(F) is a constant. The
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Section 25.3. Statistical MT 19

resulting noisy channel equation shows that we need two components: a translation
model P(F|E), and a language model P(E).TRANSLATION

MODEL

LANGUAGE MODEL

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)(25.14)

Notice that applying the noisy channel model to machine translation requires that
we think of things backwards, as shown in Fig. 25.15. We pretend that the foreign
(source language) input F we must translate is a corrupted version of some English
(target language) sentence E , and that our task is to discover the hidden (target lan-
guage) sentence E that generated our observation sentence F .

noisy sentence
source sentence

noisy channel

decoder
Mary did not slap...
Harry did not wrap...
...

Larry did not nap...

guess at source: noisy 1

noisy 2
noisy N

Mary did not slap
the green witch.

Mary did not slap
the green witch

Maria no dió una bofetada 
a la bruja verde

Language Model P(E) x Translation Model P(F|E)

Figure 25.15 The noisy channel model of statistical MT. If we are translating a source
language French to a target language English, we have to think of ’sources’ and ’targets’
backwards. We build a model of the generation process from an English sentence through
a channel to a French sentence. Now given a French sentence to translate, we pretend it is
the output of an English sentence going through the noisy channel, and search for the best
possible ‘source’ English sentence.

The noisy channel model of statistical MT thus requires three components to trans-
late from a French sentence F to an English sentence E:

• A language model to compute P(E)

• A translation model to compute P(F |E)

• A decoder, which is given F and produces the most probable E
Of these three components, we have already introduced the languagemodelP(E) in

Ch. 4. Statistical MT systems are based on the sameN-gram languagemodels as speech
recognition and other applications. The language model component is monolingual,
and so acquiring training data is relatively easy.

The next few sections will therefore concentrate on the other two components, the
translation model and the decoding algorithm.

decoder
(search algo)
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Phrase-based model

• Today: lexical translation model (IBM Model 1)

21

• Learning P(F | E) phrase translation tables:
Assume aligned corpus.  Then count
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Lexical Translation

• How do we translate a word? Look it up in the 
dictionary

• Multiple translations

• Different word senses, different registers, 
different inflections (?)

• house, home are common

• shell is specialized (the Haus of a snail is a shell)

Haus : house, home, shell, household

Thursday, January 24, 13
Tuesday, October 27, 15



How common is each?
Translation Count

house 5000

home 2000

shell 100

household 80

Thursday, January 24, 13
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MLE

p̂MLE(e | Haus) =

8
>>>>>><

>>>>>>:

0.696 if e = house

0.279 if e = home

0.014 if e = shell

0.011 if e = household

0 otherwise

Thursday, January 24, 13

Maximum Likelihood 
Estimation:  count ratios

Could learn if we had translation frequencies.
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Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in

• Thus, we have an alignment     that indicates which word
     “came from”, specifically it came from       .

• Given the alignments    , translation decisions are 
conditionally independent of each other and depend only 
on the aligned source word    .

p(e | f,m)

e f

eei
f

ai
ei fai

a

e = he1, e2, . . . , emi f = hf1, f2, . . . , fni
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Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in

• Thus, we have an alignment     that indicates which word
     “came from”, specifically it came from       .

• Given the alignments    , translation decisions are 
conditionally independent of each other and depend only 
on the aligned source word      .

p(e | f,m)

e f

eei
f

ai
ei fai

a

fai
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e = he1, e2, ...emi f = hf1, f2, ...fni
a = ha1, a2, ...ami each ai 2 {0, 1, ..., n}

Lexical Translation

• Putting our assumptions together, we have:

Alignment Translation | Alignment⇥

p(e | f,m) =
X

a2[0,n]m

p(a | f,m)⇥
mY

i=1

p(ei | fai)

Thursday, January 24, 13

=p(e | f ,m)
X

a2{0,1,..,n}m

p(a | f ,m)⇥
mY

i=1

p(ei | fai)

[Alignment]  x  [Translation | Alignment]

Modeling assumptions

Tuesday, October 27, 15



Alignment

p(a | f,m)
Most of the action for the first 10 years
of MT was here. Words weren’t the problem,
word order was hard.

Thursday, January 24, 13
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Alignment
• Alignments can be visualized in by drawing 

links between two sentences, and they are 
represented as vectors of positions:

a = (1, 2, 3, 4)>

Thursday, January 24, 13
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Reordering
• Words may be reordered during 

translation.

a = (3, 4, 2, 1)>
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Word Dropping

• A source word may not be translated at all

a = (2, 3, 4)>

Thursday, January 24, 13
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Word Insertion
• Words may be inserted during translation

English just does not have an equivalent

But it must be explained - we typically assume
every source sentence contains a NULL token

a = (1, 2, 3, 0, 4)>

Thursday, January 24, 13
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One-to-many Translation

• A source word may translate into more 
than one target word

a = (1, 2, 3, 4, 4)>

Thursday, January 24, 13
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Many-to-one Translation

• More than one source word may 
not translate as a unit in lexical translation

das Haus brach zusammen

the house collapsed

1 2 3 4

1 2 3

a =???

Thursday, January 24, 13

[IBM Model 1 can’t do this]
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IBM Model 1
• Simplest possible lexical translation model

• Additional assumptions

• The m alignment decisions are independent

• The alignment distribution for each    is uniform 
over all source words and NULL

ai

for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

Thursday, January 24, 13
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

p(e,a | f,m) =
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(e,a | f,m) =
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(ei | fai)p(e,a | f,m) =
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Example

das Haus ist klein
1 2 3 4

1 2 43

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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NULL
0
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Example

das Haus ist klein

the

1 2 3 4

1 2 43

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

the

1 2 3 4

1 2 43

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 43

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 43

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is

3

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is

3

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is small

3

NULL
0

Thursday, January 24, 13

   p(e | f):  Assume a foreign sentence and target length.
= p(a | f)  p(e | a, f)
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IBM Model 1: Inference and learning
• Alignment inference:

Given lexical translation probabilities,
infer posterior or Viterbi alignment

48

• How do we learn translation parameters?
EM Algorithm (Thursday)

argmax

✓
p(e | f, ✓)

Learning Lexical 
Translation Models
• How do we learn the parameters

• “Chicken and egg” problem

• If we had the alignments, we could 
estimate the parameters (MLE)

• If we had parameters, we could find the 
most likely alignments

p(e | f)

Thursday, January 24, 13

Learning Lexical 
Translation Models
• How do we learn the parameters

• “Chicken and egg” problem

• If we had the alignments, we could 
estimate the parameters (MLE)

• If we had parameters, we could find the 
most likely alignments

p(e | f)

Thursday, January 24, 13

• Chicken and egg problem:
If we knew alignments, translation 
parameters would be trivial (just counting)

• Translation: incorporate into noisy channel
(this model isn’t good at this)

argmax

e
p(e | f, ✓) p(e)

argmax

a
p(a | e, f, ✓)
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