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• Projects

• OH after class 

• Some major topics in second half of course

• Translation: spelling, machine translation

• Syntactic parsing:  dependencies, hierarchical phrase 
structures

• Coreference

• Lexical semantics

• Unsupervised language learning

• Topic models, exploratory analysis?

• Neural networks?
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Codebreaking
P(plaintext | encrypted text) / P(encrypted text | plaintext) P(plaintext)

Speech recognition
P(text | acoustic signal) / P(acoustic signal | text) P(text)
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2 CHAPTER 6 • SPELLING CORRECTION AND THE NOISY CHANNEL

candidates: real words that have a similar letter sequence to the error, Candidatecandidates

corrections from the spelling error graffe might include giraffe, graf, gaffe, grail, or
craft. We then rank the candidates using a distance metric between the source and
the surface error. We’d like a metric that shares our intuition that giraffe is a more
likely source than grail for graffe because giraffe is closer in spelling to graffe than
grail is to graffe. The minimum edit distance algorithm from Chapter 2 will play a
role here. But we’d also like to prefer corrections that are more frequent words, or
more likely to occur in the context of the error. The noisy channel model introduced
in the next section offers a way to formalize this intuition.

Real word spelling error detection is a much more difficult task, since any word
in the input text could be an error. Still, it is possible to use the noisy channel to find
candidates for each word w typed by the user, and rank the correction that is most
likely to have been the users original intention.

6.1 The Noisy Channel Model

In this section we introduce the noisy channel model and show how to apply it to
the task of detecting and correcting spelling errors. The noisy channel model was
applied to the spelling correction task at about the same time by researchers at AT&T
Bell Laboratories (Kernighan et al. 1990, Church and Gale 1991) and IBM Watson
Research (Mays et al., 1991).

decoder

 

noisy word
original word

noisy channel

guessed word noisy 1
noisy 2
noisy N

word hyp1
word hyp2
...
word hyp3

Figure 6.1 In the noisy channel model, we imagine that the surface form we see is actually
a “distorted” form of an original word passed through a noisy channel. The decoder passes
each hypothesis through a model of this channel and picks the word that best matches the
surface noisy word.

The intuition of the noisy channel model (see Fig. 6.1) is to treat the misspellednoisy Channel

word as if a correctly spelled word had been “distorted” by being passed through a
noisy communication channel.

This channel introduces “noise” in the form of substitutions or other changes to
the letters, making it hard to recognize the “true” word. Our goal, then, is to build a
model of the channel. Given this model, we then find the true word by passing every
word of the language through our model of the noisy channel and seeing which one
comes the closest to the misspelled word.

This noisy channel model, is a kind of Bayesian inference. We see an obser-Bayesian

Noisy channel model
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Spelling correction as noisy channel
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6.1 • THE NOISY CHANNEL MODEL 3

vation x (a misspelled word) and our job is to find the word w that generated this
misspelled word. Out of all possible words in the vocabulary V we want to find theV
word w such that P(w|x) is highest. We use the hat notation ˆ to mean “our estimateˆ

of the correct word”.

ŵ = argmax
w2V

P(w|x) (6.1)

The function argmaxx f (x) means “the x such that f (x) is maximized”. Equa-argmax

tion 6.1 thus means, that out of all words in the vocabulary, we want the particular
word that maximizes the right-hand side P(w|x).

The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 6.1
into a set of other probabilities. Bayes’ rule is presented in Eq. 6.2; it gives us a way
to break down any conditional probability P(a|b) into three other probabilities:

P(a|b) = P(b|a)P(a)
P(b)

(6.2)

We can then substitute Eq. 6.2 into Eq. 6.1 to get Eq. 6.3:

ŵ = argmax
w2V

P(x|w)P(w)
P(x)

(6.3)

We can conveniently simplify Eq. 6.3 by dropping the denominator P(x). Why
is that? Since we are choosing a potential correction word out of all words, we will
be computing P(x|w)P(w)

P(x) for each word. But P(x) doesn’t change for each word ; we
are always asking about the most likely word for the same observed error x, which
must have the same probability P(x). Thus, we can choose the word that maximizes
this simpler formula:

ŵ = argmax
w2V

P(x|w)P(w) (6.4)

To summarize, the noisy channel model says that we have some true underlying
word w, and we have a noisy channel that modifies the word into some possible
misspelled observed surface form. The likelihood or channel model of the noisylikelihood

channel model channel producing any particular observation sequence x is modeled by P(x|w). The
prior probability of a hidden word is modeled by P(w). We can compute the mostprior

probability
probable word ŵ given that we’ve seen some observed misspelling x by multiply-
ing the prior P(w) and the likelihood P(x|w) and choosing the word for which this
product is greatest.

We apply the noisy channel approach to correcting non-word spelling errors by
taking any word not in our spell dictionary, generating a list of candidate words,
ranking them according to Eq. 6.4, and picking the highest-ranked one. We can
modify Eq. 6.4 to refer to this list of candidate words instead of the full vocabulary
V as follows:

ŵ = argmax
w2C

channel modelz }| {
P(x|w)

prior
z}|{
P(w) (6.5)

The noisy channel algorithm is shown in Fig. 6.2.
To see the details of the computation of the likelihood and language model, let’s

walk through an example, applying the algorithm to the example misspelling acress.
The first stage of the algorithm proposes candidate corrections by finding words that

Inference problem

Hypothetical Model

Edit distance Language model

I was too tired to go
I was to tired to go
I was zzz tired to go
...

INPUT
I was ti tired to go

1. How to score possible translations?
2. How to efficiently search over them?
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Edit distance
• Tasks

• Calculate numerical similarity between pairs

• President Barack Obama

• President Barak Obama

• Enumerate edits with distance=1

• Model: Assume possible changes.

• Deletions:         actress => acress

• Insertions:           cress => acress

• Substitutions:     access => acress

• [Transpositions:  caress => acress]

• Probabilistic model: assume each has prob of occurrence
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Levenshtein Algorithm
• Goal: Infer minimum edit distance, and argmin edit path,

for a pair of strings.  e.g.:  (intention, execution)

12

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

2.4.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.13 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. How-
ever, lots of distinct edit paths will end up in the same state (string), so rather than
recomputing all those paths, we could just remember the shortest path to a state
each time we saw it. We can do this by using dynamic programming. Dynamicdynamic

programming
programming is the name for a class of algorithms, first introduced by Bellman
(1957), that apply a table-driven method to solve problems by combining solutions
to sub-problems. Some of the most commonly used algorithms in natural language
processing make use of dynamic programming, such as the the Viterbi and forward
algorithms (Chapter 7) and the CKY algorithm for parsing (Chapter 12).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various sub-problems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.14.

n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.14 Path from intention to execution.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal
operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer (1974)minimum edit
distance
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[added after lecture]

13

Declaratively, edit distance has a recursive substructure:
d(barak obama, barack obama) = d(barak obama, barack obam) + InsertionCost

This allows for a dynamic programming algorithm to quickly compute the lowest cost 
path -- specifically, the Levenshtein algorithm.
(We’ll just do the version with ins/del/subst, no transpositions)

• Want to calculate:
Minimum edit distance between two strings X, Y, lengths n,m
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• Want to calculate:
Minimum edit distance between two strings X, Y, lengths n,m

• D(i,j): edit dist between X[1..i] and Y[1..j].
D(n,m):  edit dist between X and Y

14

2.4 • MINIMUM EDIT DISTANCE 19

but independently discovered by many people (summarized later, in the Historical
Notes section of Chapter 7).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D(i, j) as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D(n,m).

We’ll use dynamic programming to compute D(n,m) bottom up, combining so-
lutions to subproblems. In the base case, with a source substring of length i but an
empty target string, going from i characters to 0 requires i deletes. With a target
substring of length j but an empty source going from 0 characters to j characters
requires j inserts. Having computed D(i, j) for small i, j we then compute larger
D(i, j) based on previously computed smaller values. The value of D(i, j) is com-
puted by taking the minimum of the three possible paths through the matrix which
arrive there:

D[i, j] = min

8
<

:

D[i�1, j]+del-cost(source[i])
D[i, j�1]+ ins-cost(target[ j]))
D[i�1, j�1]+ sub-cost(source[i], target[ j])

If we assume the version of Levenshtein distance in which the insertions and
deletions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have
a cost of 2 (except substitution of identical letters have zero cost), the computation
for D(i, j) becomes:

D[i, j] = min

8
>><

>>:

D[i�1, j]+1
D[i, j�1]+1

D[i�1, j�1]+
⇢

2; if source[i] 6= target[ j]
0; if source[i] = target[ j]

The algorithm itself is summarized in Fig. 2.15 and Fig. 2.16 shows the results
of applying the algorithm to the distance between intention and execution with the
version of Levenshtein in Eq. 2.5.

Knowing the minimum edit distance is useful for algorithms like finding poten-
tial spelling error corrections. But the edit distance algorithm is important in another
way; with a small change, it can also provide the minimum cost alignment between
two strings. Aligning two strings is useful throughout speech and language process-
ing. In speech recognition, minimum edit distance alignment is used to compute
word error rate in speech recognition (Chapter 25). Alignment plays a role in ma-
chine translation, in which sentences in a parallel corpus (a corpus with a text in two
languages) need to be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.17
shows this path with the boldfaced cell. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells
in the same column indicates a deletion.

Figure 2.17 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.
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To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.17
shows this path with the boldfaced cell. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells
in the same column indicates a deletion.

Figure 2.17 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.

• Levenshtein algorithm:  dynamic programming algorithm
to quickly calculate all D[i,j].

Levenshtein Algorithm

ins,del=1
sub=2
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20 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

function MIN-EDIT-DISTANCE(source, source) returns min-distance

n LENGTH(source)
m LENGTH(target)
Create a distance matrix distance[n+1,m+1]

# Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0] D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j] D[0, j-1] + ins-cost(target[j])

# Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j] MIN( D[i�1, j] + del-cost(source[i]),

D[i�1, j�1] + sub-cost(source[i], target[j]),
D[i, j�1] + ins-cost(target[j]))

# Termination
return D[n,m]

Figure 2.15 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., 8x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Src\Tar # e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.16 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.15, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions. In italics are the initial values representing the distance from the
empty string.

We’ve shown a schematic of these backpointers in Fig. 2.17, after a similar diagram
in Gusfield (1997). Some cells have multiple backpointers because the minimum
extension could have come from multiple previous cells. In the second step, we
perform a backtrace. In a backtrace, we start from the last cell (at the final row andbacktrace
column), and follow the pointers back through the dynamic programming matrix.
Each complete path between the final cell and the initial cell is a minimum distance
alignment. Exercise 2.7 asks you to modify the minimum edit distance algorithm to
store the pointers and compute the backtrace to output an alignment.
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Backpointers
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2.5 • SUMMARY 21

# e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 - " 2 - " 3 - " 4 - " 5 - " 6 - " 7 - 6  7  8
n 2 - " 3 - " 4 - " 5 - " 6 - " 7 - " 8 " 7 - " 8 - 7
t 3 - " 4 - " 5 - " 6 - " 7 - " 8 - 7  " 8 - " 9 " 8
e 4 - 3  4 - 5  6  7  " 8 - " 9 - " 10 " 9
n 5 " 4 - " 5 - " 6 - " 7 - " 8 - " 9 - " 10 - " 11 -" 10
t 6 " 5 - " 6 - " 7 - " 8 - " 9 - 8  9  10  " 11
i 7 " 6 - " 7 - " 8 - " 9 - " 10 " 9 - 8  9  10
o 8 " 7 - " 8 - " 9 - " 10 - " 11 " 10 " 9 - 8  9
n 9 " 8 - " 9 - " 10 - " 11 - " 12 " 11 " 10 " 9 - 8

Figure 2.17 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings.

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.15 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. We’ll discuss how these weights can be estimated in
Ch. 5. The Viterbi algorithm, for example, is an extension of minimum edit distance
that uses probabilistic definitions of the operations. Instead of computing the “mini-
mum edit distance” between two strings, Viterbi computes the “maximum probabil-
ity alignment” of one string with another. We’ll discuss this more in Chapter 7.

2.5 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduce the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.

• Basic operations in regular expressions include concatenation of symbols,
disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors
(ˆ, $) and precedence operators ((,)).

• Word tokenization and normalization are generally done by cascades of
simple regular expressions substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.
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Dynamic programming
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22 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Bibliographical and Historical Notes
Kleene (1951) and (1956) first defined regular expressions and the finite automaton,
based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build
regular expressions compilers into editors for text searching (Thompson, 1968). His
editor ed included a command “g/regular expression/p”, or Global Regular Expres-
sion Print, which later became the Unix grep utility.

Text normalization algorithms has been applied since the beginning of the field.
One of the earliest widely-used stemmers was Lovins (1968). Stemming was also
applied early to the digital humanities, by Packard (1973), who built an affix-stripping
morphological parser for Ancient Greek. Currently a wide variety of code for tok-
enization and normalization is available, such as the Stanford Tokenizer (http://
nlp.stanford.edu/software/tokenizer.shtml) or specialized tokenizers for
Twitter (O’Connor et al., 2010), or for sentiment (http://sentiment.christopherpotts.
net/tokenizing.html). See Palmer (2012) for a survey of text preprocessing.
While the max-match algorithm we describe is commonly used as a segmentation
baseline in languages like Chinese, higher accuracy algorithms like the Stanford
CRF segmenter, are based on sequence models; see Tseng et al. (2005) and Chang
et al. (2008). NLTK is an essential tool that offers both useful Python libraries
(http://www.nltk.org) and textbook descriptions (Bird et al., 2009). of many
algorithms including text normalization and corpus interfaces.

For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps
(1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation-
ship with other measures of linguistic complexity. For more on edit distance, see the
excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’
to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail-
able packages to compute edit distance, including Unix diff and the NIST sclite
program (NIST, 2005).

In his autobiography Bellman (1984) explains how he originally came up with
the term dynamic programming:

“...The 1950s were not good years for mathematical research. [the]
Secretary of Defense ...had a pathological fear and hatred of the word,
research... I decided therefore to use the word, “programming”. I
wanted to get across the idea that this was dynamic, this was multi-
stage... I thought, let’s ... take a word that has an absolutely precise
meaning, namely dynamic... it’s impossible to use the word, dynamic,
in a pejorative sense. Try thinking of some combination that will pos-
sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

Exercises
2.1 Write regular expressions for the following languages.

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;
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Bibliographical and Historical Notes
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based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build
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editor ed included a command “g/regular expression/p”, or Global Regular Expres-
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sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

Exercises
2.1 Write regular expressions for the following languages.
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6 CHAPTER 6 • SPELLING CORRECTION AND THE NOISY CHANNEL

P(x|w) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

del[xi�1,wi]

count[xi�1wi]
, if deletion

ins[xi�1,wi]

count[wi�1]
, if insertion

sub[xi,wi]

count[wi]
, if substitution

trans[wi,wi+1]

count[wiwi+1]
, if transposition

(6.6)

Using the counts from Kernighan et al. (1990) results in the error model proba-
bilities for acress shown in Fig. 6.4.

Candidate Correct Error
Correction Letter Letter x|w P(x|w)
actress t - c|ct .000117
cress - a a|# .00000144
caress ca ac ac|ca .00000164
access c r r|c .000000209
across o e e|o .0000093
acres - s es|e .0000321
acres - s ss|s .0000342

Figure 6.4 Channel model for acress; the probabilities are taken from the del[], ins[],
sub[], and trans[] confusion matrices as shown in Kernighan et al. (1990).

Figure 6.5 shows the final probabilities for each of the potential corrections;
the unigram prior is multiplied by the likelihood (computed with Eq. 6.6 and the
confusion matrices). The final column shows the product, multiplied by 109 just for
readability.

Candidate Correct Error
Correction Letter Letter x|w P(x|w) P(w) 109*P(x|w)P(w)
actress t - c|ct .000117 .0000231 2.7
cress - a a|# .00000144 .000000544 0.00078
caress ca ac ac|ca .00000164 .00000170 0.0028
access c r r|c .000000209 .0000916 0.019
across o e e|o .0000093 .000299 2.8
acres - s es|e .0000321 .0000318 1.0
acres - s ss|s .0000342 .0000318 1.0

Figure 6.5 Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. 6.4. The final score is multiplied by 109

for readability.

The computations in Fig. 6.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: . . . was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her. . . ”. The surrounding words make it
clear that actress and not across was the intended word.

6.1 • THE NOISY CHANNEL MODEL 5

error model? A perfect model of the probability that a word will be mistyped woulderror model

condition on all sorts of factors: who the typist was, whether the typist was left-
handed or right-handed, and so on. Luckily, we can get a pretty reasonable estimate
of P(x|w) just by looking at local context: the identity of the correct letter itself, the
misspelling, and the surrounding letters. For example, the letters m and n are often
substituted for each other; this is partly a fact about their identity (these two letters
are pronounced similarly and they are next to each other on the keyboard) and partly
a fact about context (because they are pronounced similarly and they occur in similar
contexts).

A simple model might estimate, for example, p(acress|across) just using the
number of times that the letter e was substituted for the letter o in some large corpus
of errors. To compute the probability for each edit in this way we’ll need a confusion
matrix that contains counts of errors. In general a confusion matrix lists the numberconfusion

matrix
of time one thing was confused with another. Thus for example a substitution matrix
will be a square matrix of size 26⇥26 (or more generally |A|⇥ |A|, for an alphabet
A) that represents the number of times one letter was incorrectly used instead of
another. Following Kernighan et al. (1990) we’ll use four confusion matrices.

del[x,y]: count(xy typed as x)
ins[x,y]: count(x typed as xy)
sub[x,y]: count(x typed as y)
trans[x,y]: count(xy typed as yx)

Note that we’ve conditioned the insertion and deletion probabilities on the previ-
ous character; we could instead have chosen to condition on the following character.

Where do we get these confusion matrices? One way is to extract them from
lists of misspellings like the following:

additional: addional, additonal
environments: enviornments, enviorments, enviroments
preceded: preceeded
...

There are lists available on Wikipedia and from Roger Mitton (http://www.
dcs.bbk.ac.uk/˜ROGER/corpora.html) Peter Norvig (http://norvig.com/
ngrams/). Norvig also gives the counts for each single-character edits that can be
used to directly create the error model probabilities.

An alternative approach used by Kernighan et al. (1990) is to compute the ma-
trices by iteratively using this very spelling error correction algorithm itself. The
iterative algorithm first initializes the matrices with equal values; thus, any character
is equally likely to be deleted, equally likely to be substituted for any other char-
acter, etc. Next, the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their predicted corrections, the confusion
matrices can now be recomputed, the spelling algorithm run again, and so on. This
iterative algorithm is an instance of the important EM algorithm (Dempster et al.,
1977), which we discuss in Chapter 7.

Once we have the confusion matrices, we can estimate P(x|w) as follows (where
wi is the ith character of the correct word w) and xi is the ith character of the typo x:
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vation x (a misspelled word) and our job is to find the word w that generated this
misspelled word. Out of all possible words in the vocabulary V we want to find theV
word w such that P(w|x) is highest. We use the hat notation ˆ to mean “our estimateˆ

of the correct word”.

ŵ = argmax
w2V

P(w|x) (6.1)

The function argmaxx f (x) means “the x such that f (x) is maximized”. Equa-argmax

tion 6.1 thus means, that out of all words in the vocabulary, we want the particular
word that maximizes the right-hand side P(w|x).

The intuition of Bayesian classification is to use Bayes’ rule to transform Eq. 6.1
into a set of other probabilities. Bayes’ rule is presented in Eq. 6.2; it gives us a way
to break down any conditional probability P(a|b) into three other probabilities:

P(a|b) = P(b|a)P(a)
P(b)

(6.2)

We can then substitute Eq. 6.2 into Eq. 6.1 to get Eq. 6.3:

ŵ = argmax
w2V

P(x|w)P(w)
P(x)

(6.3)

We can conveniently simplify Eq. 6.3 by dropping the denominator P(x). Why
is that? Since we are choosing a potential correction word out of all words, we will
be computing P(x|w)P(w)

P(x) for each word. But P(x) doesn’t change for each word ; we
are always asking about the most likely word for the same observed error x, which
must have the same probability P(x). Thus, we can choose the word that maximizes
this simpler formula:

ŵ = argmax
w2V

P(x|w)P(w) (6.4)

To summarize, the noisy channel model says that we have some true underlying
word w, and we have a noisy channel that modifies the word into some possible
misspelled observed surface form. The likelihood or channel model of the noisylikelihood

channel model channel producing any particular observation sequence x is modeled by P(x|w). The
prior probability of a hidden word is modeled by P(w). We can compute the mostprior

probability
probable word ŵ given that we’ve seen some observed misspelling x by multiply-
ing the prior P(w) and the likelihood P(x|w) and choosing the word for which this
product is greatest.

We apply the noisy channel approach to correcting non-word spelling errors by
taking any word not in our spell dictionary, generating a list of candidate words,
ranking them according to Eq. 6.4, and picking the highest-ranked one. We can
modify Eq. 6.4 to refer to this list of candidate words instead of the full vocabulary
V as follows:

ŵ = argmax
w2C

channel modelz }| {
P(x|w)

prior
z}|{
P(w) (6.5)

The noisy channel algorithm is shown in Fig. 6.2.
To see the details of the computation of the likelihood and language model, let’s

walk through an example, applying the algorithm to the example misspelling acress.
The first stage of the algorithm proposes candidate corrections by finding words that

Edit distance Language model
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Figure 6.5 Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. 6.4. The final score is multiplied by 109

for readability.

The computations in Fig. 6.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: . . . was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her. . . ”. The surrounding words make it
clear that actress and not across was the intended word.
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Figure 6.4 Channel model for acress; the probabilities are taken from the del[], ins[],
sub[], and trans[] confusion matrices as shown in Kernighan et al. (1990).

Figure 6.5 shows the final probabilities for each of the potential corrections;
the unigram prior is multiplied by the likelihood (computed with Eq. 6.6 and the
confusion matrices). The final column shows the product, multiplied by 109 just for
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Figure 6.5 Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. 6.4. The final score is multiplied by 109

for readability.

The computations in Fig. 6.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: . . . was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her. . . ”. The surrounding words make it
clear that actress and not across was the intended word.
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function NOISY CHANNEL SPELLING(word x, dict D, lm, editprob) returns correction

if x /2 D
candidates, edits All strings at edit distance 1 from x that are 2 D, and their edit
for each c,e in candidates, edits

channel editprob(e)
prior lm(x)
score[c] = log channel + log prior

return argmaxc score[c]

Figure 6.2 Noisy channel model for spelling correction for unknown words.

have a similar spelling to the input word. Analysis of spelling error data has shown
that the majority of spelling errors consist of a single-letter change and so we often
make the simplifying assumption that these candidates have an edit distance of 1
from the error word. To find this list of candidates we’ll use the minimum edit dis-
tance algorithm introduce in Chapter 2, but extended so that in addition to insertions,
deletions, and substitutions, we’ll add a fourth type of edit, transpositions, in which
two letters are swapped. The version of edit distance with transposition is called
Damerau-Levenshtein edit distance. Applying all such single transformations toDamerau-

Levenshtein
acress yields the list of candidate words in Fig. 6.3.

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t -- 2 deletion
acress cress -- a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres -- s 5 insertion
acress acres -- s 4 insertion

Figure 6.3 Candidate corrections for the misspelling acress and the transformations that
would have produced the error (after Kernighan et al. (1990)). “–” represents a null letter.

Once we have a set of a candidates, to score each one using Eq. 6.5 requires that
we compute the prior and the channel model.

The prior probability of each correction P(w) is the language model probability
of the word w in context. We can use any language model from the previous chapter,
from unigram to trigram or 4-gram. For this example let’s start in the following table
by assuming a unigram language model. We computed the language model from the
404,253,213 words in the Corpus of Contemporary English (COCA).

w count(w) p(w)
actress 9,321 .0000231
cress 220 .000000544
caress 686 .00000170
access 37,038 .0000916
across 120,844 .000299
acres 12,874 .0000318

How can we estimate the likelihood P(x|w), also called the channel model orchannel model

Unigram LM:
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Figure 6.5 shows the final probabilities for each of the potential corrections;
the unigram prior is multiplied by the likelihood (computed with Eq. 6.6 and the
confusion matrices). The final column shows the product, multiplied by 109 just for
readability.

Candidate Correct Error
Correction Letter Letter x|w P(x|w) P(w) 109*P(x|w)P(w)
actress t - c|ct .000117 .0000231 2.7
cress - a a|# .00000144 .000000544 0.00078
caress ca ac ac|ca .00000164 .00000170 0.0028
access c r r|c .000000209 .0000916 0.019
across o e e|o .0000093 .000299 2.8
acres - s es|e .0000321 .0000318 1.0
acres - s ss|s .0000342 .0000318 1.0

Figure 6.5 Computation of the ranking for each candidate correction, using the language
model shown earlier and the error model from Fig. 6.4. The final score is multiplied by 109

for readability.

The computations in Fig. 6.5 show that our implementation of the noisy channel
model chooses across as the best correction, and actress as the second most
likely word.

Unfortunately, the algorithm was wrong here; the writer’s intention becomes
clear from the context: . . . was called a “stellar and versatile acress whose com-
bination of sass and glamour has defined her. . . ”. The surrounding words make it
clear that actress and not across was the intended word.

=>
unnorm.

posterior:

4 CHAPTER 6 • SPELLING CORRECTION AND THE NOISY CHANNEL

function NOISY CHANNEL SPELLING(word x, dict D, lm, editprob) returns correction

if x /2 D
candidates, edits All strings at edit distance 1 from x that are 2 D, and their edit
for each c,e in candidates, edits

channel editprob(e)
prior lm(x)
score[c] = log channel + log prior

return argmaxc score[c]

Figure 6.2 Noisy channel model for spelling correction for unknown words.

have a similar spelling to the input word. Analysis of spelling error data has shown
that the majority of spelling errors consist of a single-letter change and so we often
make the simplifying assumption that these candidates have an edit distance of 1
from the error word. To find this list of candidates we’ll use the minimum edit dis-
tance algorithm introduce in Chapter 2, but extended so that in addition to insertions,
deletions, and substitutions, we’ll add a fourth type of edit, transpositions, in which
two letters are swapped. The version of edit distance with transposition is called
Damerau-Levenshtein edit distance. Applying all such single transformations toDamerau-

Levenshtein
acress yields the list of candidate words in Fig. 6.3.

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t -- 2 deletion
acress cress -- a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres -- s 5 insertion
acress acres -- s 4 insertion

Figure 6.3 Candidate corrections for the misspelling acress and the transformations that
would have produced the error (after Kernighan et al. (1990)). “–” represents a null letter.

Once we have a set of a candidates, to score each one using Eq. 6.5 requires that
we compute the prior and the channel model.

The prior probability of each correction P(w) is the language model probability
of the word w in context. We can use any language model from the previous chapter,
from unigram to trigram or 4-gram. For this example let’s start in the following table
by assuming a unigram language model. We computed the language model from the
404,253,213 words in the Corpus of Contemporary English (COCA).

w count(w) p(w)
actress 9,321 .0000231
cress 220 .000000544
caress 686 .00000170
access 37,038 .0000916
across 120,844 .000299
acres 12,874 .0000318

How can we estimate the likelihood P(x|w), also called the channel model orchannel model

Unigram LM:
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For this reason, it is important to use larger language models than unigrams.
For example, if we use the Corpus of Contemporary American English to compute
bigram probabilities for the words actress and across in their context using add-one
smoothing, we get the following probabilities:

P(actress|versatile) = .000021
P(across|versatile) = .000021

P(whose|actress) = .0010
P(whose|across) = .000006

Multiplying these out gives us the language model estimate for the two candi-
dates in context:

P(“versatile actress whose”) = .000021⇤ .0010 = 210⇥10�10

P(“versatile across whose”) = .000021⇤ .000006 = 1⇥10�10

Combining the language model with the error model in Fig. 6.5, the bigram noisy
channel model now chooses the correct word actress.

Evaluating spell correction algorithms is generally done by holding out a train-
ing, development and test set from lists of errors like those on the Norvig and Mitton
sites mentioned above.

6.2 Real-word spelling errors

The noisy channel approach can also be applied to detect and correct real-word
spelling errors, errors that result in an actual word of English. This can happen fromreal-word error

detection
typographical errors (insertion, deletion, transposition) that accidentally produce a
real word (e.g., there for three) or because the writer substituted the wrong spelling
of a homophone or near-homophone (e.g., dessert for desert, or piece for peace). A
number of studies suggest that between 25% and 40% of spelling errors are valid
English words as in the following examples (Kukich, 1992):

They are leaving in about fifteen minuets to go to her house.
The design an construction of the system will take more than a year.
Can they lave him my messages?
The study was conducted mainly be John Black.

The noisy channel can deal with real-word errors as well. Let’s begin with a
version of the noisy channel model first proposed by Mays et al. (1991) to deal
with these real-word spelling errors. Their algorithm takes the input sentence X =
{x1,x2, . . . ,xk, . . . ,xn}, generates a large set of candidate correction sentences C(X),
then picks the sentence with the highest language model probability.

To generate the candidate correction sentences, we start by generating a set of
candidate words for each input word xi. The candidates, C(xi). includes every En-
glish word with a small edit distance from xi—(Mays et al., 1991) chose edit distance
one. So C(graffe) = {giraffe,graff,gaffe}. We then make the simplifying assumption
that every sentence has only one error. Thus the set of candidate sentences C(X) for
a sentence X = Only two of thew apples would be:

P(acress | versatile _ whose) = ?
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only two of thew apples
oily two of thew apples
only too of thew apples
only to of thew apples
only tao of the apples
only two on thew apples
only two off thew apples
only two of the apples
only two of threw apples
only two of thew applies
only two of thew dapples
...

Each sentence is scored by the noisy channel:

Ŵ = argmax
W2C(W )

P(X |W )P(W ) (6.7)

For P(W ), we can use the trigram probability of the sentence.
What about the channel model? Since these are real words, we need to consider

the possibility that the input word is not an error. Let’s say that the channel proba-
bility of writing a word correctly, P(w|w), is a; we can make different assumptions
about exactly waht the value of a is in different tasks; perhaps a is .95, assum-
ing people write 1 word wrong out of 20, for some tasks, or maybe .99 for others.
Mays et al. (1991) proposed a simple model: given a typed word x, let the channel
model P(x|w) be a when x = w, and then just distribute 1�a evenly over all other
candidate corrections C(x):

p(x|w) =

8
>>><

>>>:

a if x = w
1�a
|C(x)| if x 2C(x)

0 otherwise

(6.8)

Now we can replace the equal distribution of 1�a over all corrections in Eq. 6.8;
we’ll make the distribution proportional to the edit probability from the more sophis-
ticated channel model from Eq. 6.6 that used the confusion matrices.

Let’s see an example of this integrated noisy channel model applied to a real
word. Suppose we see the string two of thew. The author might have intended
to type the real word thew, a rare word meaning ‘muscular strength’. But thew
here could also be a typo for the or some other word. For the purposes of this
example lets consider edit distance 1, and only the following five candidates the,
thaw, threw, and thwe (a rare name) and the string as typed, thew. We took the edit
probabilities from Norvig’s (2009) analysis of this example. For the language model
probabilities, we used a Stupid Backoff model trained on the Google N-grams:

P(the|two of) = 0.476012
P(thew|two of) = 9.95051 ⇥10�8

P(thaw|two of) = 2.09267 ⇥10�7

P(threw|two of) = 8.9064 ⇥10�7

P(them|two of) = 0.00144488
P(thwe|two of) = 5.18681 ⇥10�9

Here we’ve just computed probabilities for the single phrase two of thew, but
the model applies to entire sentences; so if the example in context was two of thew
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