CRF and Structured Perceptron

CS 585, Fall 2015 -- Oct. 6
Introduction to Natural Language Processing

http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor

UMASSCS ..

SCHOOL OF COMPUTER SCIENCE

Tuesday, October 6, 15

http://people.cs.umass.edu/~brenocon/inlp2015/
http://people.cs.umass.edu/~brenocon/inlp2015/

® Viterbi exercise solution
® CRF & Structured Perceptrons

® Thursday: project discussion + midterm review

Tuesday, October 6, 15

Log-linear models (NB, LogReg, HMM, CRF.)

® X: [ext Data

® y: Proposed class or sequence

® O: Feature weights (model parameters)
® f(x,y): Feature extractor, produces feature vector

p(yle) = exp (67 (z,9))
H/—/
G(y)

Decision rule: arg max G(y")
y* Eoutputs(x)

How to we evaluate for HMM/CRF? Viterbi!

3

Tuesday, October 6, 15

Things to do with a log-linear model

p(y|r) =

decoding/prediction

ar max G(y”
gy*Eoutputs(:c) (y)

parameter learning

feature engineering
(human-in-the-loop)

1

T
—exp (07 f(z,9))
A
N———
G(y)
f(x,y) X y 0
Feature extractor Text Input Output Feature
(feature vector) weights
given given obtain given
(just one) (just one)
given given given obtain
(many pairs) (many pairs)
fiddle with , an obtain
during siven sIven in each
, (many pairs) (many pairs) .
experiments experiment

4 [This is new slide after lecture]

Tuesday, October 6, 15

HMM as factor graph

Y

B,

Py, w) = Hp(wy|yt) P(Ye+1yt)

log p(y, w) = » log p(wyly:) + log p(ye|yr—1)

1 t f 1
G(y) B (yt) A(yt; Yt+1)
goodness emission transition

factor score factor score

(Additive) Viterbi: 218 _max — G(y7)

y* Eoutputs(x)

Tuesday, October 6, 15

® is there a terrible bug in sutton&mccallum?
there’s no sum over t in these equations!

We can write (1.13) more compactly by introducing the concept of feature functions,
just as we did for logistic regression in (1.7). Each feature function has the
form fr(ys, y+—1,2¢). In order to duplicate (1.13), there needs to be one feature
fi;(y,y',x) = Lyy—;3 11, =;1 for each transition (4, j) and one feature f;,(y,y’, z) =
1y=iy1{z—0} for each state-observation pair (7,0). Then we can write an HMM as:

ply,x) = %GXP {Z)\kfk(yt,yt—l,ﬂ?t)} : (1.14)

k=1

Definition 1.1

Let Y, X be random vectors, A = {\} € RE be a parameter vector, and
{fely, v, x4)}E_, be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y|x) that takes the form

plylx) = Z(lx) €Xp {Z Akfk(ytayt—laxt>} ; (1.16)

k=1

Tuesday, October 6, 15

HMM as log-linear

Py, w) = Hp(wy|yt) P(Ye+1yt)

Y

B,

?j ys

log p(y, w) = » log p(wyly:) + log p(ye|yr—1)

A ’f 1 1

G(y) B (yt) A(yt; Yt+1)
goodness emission transition
_ factor score factor score _
G(Y) = 2|2 > mwallye =kAawe=wh+ 3 Ny = Ayser = k)
t |keEK weV k,jEK]

p— Z Z Hift,i(ytayt—l-lth)

t ¢€allfeats

= Y 0 fi(y Yerr, wr)

1€allfeats 7

[~SMeq .13, 1.14]

Tuesday, October 6, 15

CRF

logp(ylz) = C + 0" f(z,y) Prob. dist over whole sequence

flz,y) = Z fe(x, Yty Yy1)

Linear-chain CRF: whole-
sequence feature function
decomposes into pairs

® advantages
® |.why just word identity features! add many more!

® 2. can train it to optimize accuracy of sequences
(discriminative learning)

® Viterbi can be used for efficient prediction

Tuesday, October 6, 15

finna
gold y= 'V

get good
\'% A

Two simple feature templates

“Transition features”

ftrans A, B L y

“Observation features”

femit:A,w (.CE, y)

Zl{yt 1 = A,y = B}

:Zl{yt = A, 2y = w}

t

f(x,y) is...

VV: |
VA: |
V,N: 0

Vfinna: |
Vget: |
A,good: |
N,good: 0

Tuesday, October 6, 15

ﬁ NNna get good Mathematical convention is

numeric indexing, though

gOId y — V V A §Ometimes convenient to

implement as hash table.

Transition features Observation features

9 -0o6}|-10y11}J05j00}|08})05}|-13|-16j00}06}00})-02|-02)08}-10}J01}|-19}|11}12]|-01]-1.0]-0.1]-0.1

f(z,y) [1|o|2]0]o0

N
ftrans:V,A(xa y) — Z {yt—l — V7 Yt — A}

V

fobs Vﬁnna L y Z 1{yt — V Tt — ﬁnna}

Goodness(y) = ' f(x, y)

Tuesday, October 6, 15

CRF: prediction with Viterbi

logp(ylz) = C + 0" f(z,y) Prob. dist over whole sequence

_ Z fi(2) Linear-chain CRF: whole-
N tAEs It e+ sequence feature function

decomposes into pairs

® Scoring function has local decomposition
T

fla,y) =) fOtz,y)+ Zf(A)(yt_l,yt)

t

07 f(ZeTf (t,2,y) + Z+f<A> Y1, Yt)

Tuesday, October 6, 15

|. Motivation: we want features in our sequence
model!

2. And how do we learn the parameters?

3. Outline

|. Log-linear models

2. Log-linear Sequence Models:
|. Log-scale additive Viterbi
2. Conditional Random Fields

3. Learning: the Perceptron

Tuesday, October 6, 15

The Perceptron Algorithm

Perceptron is not a model:
it is a learning algorithm

® Rosenblatt 1957

Insanely simple algorithm

® |terate through dataset.
Predict.
Update weights to fix prediction errors.

Can be used for classification OR
structured prediction

® structured perceptron

Discriminative learning algorithm for any
log-linear model (our view in this course)

............
............
............
............
............
............

............

»
<
Pl 2 ____ _______—_____Eon ol 'y

Sl i T W0 =T =l ed e

e il =l =l el
’ y ' ¥ r

L =
[~ =

Py

P o

TS .Q’-i W= 4 w4 Wl W=l =)
» » v » y

~

‘ Ll s e ol 8- § |

f
!

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm. The machine
was connected to a camera that used 20x20 cadmium
sulfide photocells to produce a 400-pixel image. The
main visible feature is a patchboard that allowed
experimentation with different combinations of input
features. To the right of that are arrays ofpotentiometers
that implemented the adaptive weights.

Tuesday, October 6, 15

https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Potentiometer

Binary perceptron

® For ~10 iterations

® For each (x,y) in dataset
e PREDICT .
y- =POSi 0 x>0
= NEG if 0"z < 0
® |F y=y* do nothing

® FE|SE update weights
if POS misclassified as NEG:

0:=10 T let’s make it more positive-y next time around

0:=60—r«x if NEG misclassified as POS:

/ let’s make it more negative-y next time

learning rate constant
e.g r=|

Tuesday, October 6, 15

Structured/multiclass Perceptron

® For ~10 iterations

® For each (x,y) in dataset
e PREDICT

y* =argmax0' f(z,y)
y/

® |F y=y* do nothing

o FEISE update weights

*
learning rate constant Features for Features for

e.g.r=I TRUE label PREDICTED label

Tuesday, October 6, 15

Update rule

learning rate

Features for

Features for

eg r=| TRUE label ~ PREDICTED label
y=POS \ l l
x=*“this awesome movie ...” 0-— 0 T‘[f(.CE y) . f(a;‘ y*)]
. *T Y Y
Make mistake: y*=NEG /
POS_awW | pos this [POS oof|.... | NEC-2W INEG this| NEG oof |
esome esome
real f(x, POS) = I I 0 0 0 0
pred f(x, NEG)=[0 0 0 .. | | 0
f(x, POS) — f(x, NEG) =| +1 + 0 |..| -l - 0

Tuesday, October 6, 15

Update rule

learning rate Features for Features for
e.g r=| TRUE label ~ PREDICTED label

! |
= 6’\A7°[f(:v,y) — f(z,y")]

For each feature j in true y but not predicted y*:

0; :=0;+(r)f;(z,y)

For each feature j not in true y, but in predicted y*:

0 :=0; —(r)f;(z,y)

Tuesday, October 6, 15

finna
gold y= 'V

Two simple feature templates

get
\'

good
A

“Transition features”

ftrans A, B L y

“Observation features”

femit:A,w (.CE, y)

Zl{yt 1= A,y =

t

B}

:Zl{yt = A, 2y = w}

f(x,y) is...

VV: |
VA: |
V,N: 0

Vfinna: |
Vget: |
A,good: |
N,good: 0

Tuesday, October 6, 15

ﬁ NNna get good Mathematical convention is

numeric indexing, though

gOId y — V V A §Ometimes convenient to

implement as hash table.

Transition features Observation features

9 -0o6}|-10y11}J05j00}|08})05}|-13|-16j00}06}00})-02|-02)08}-10}J01}|-19}|11}12]|-01]-1.0]-0.1]-0.1

f(z,y) [1|o|2]0]o0

N
ftrans:V,A(xa y) — Z {yt—l — V7 Yt — A}

V

fobs Vﬁnna L y Z 1{yt — V Tt — ﬁnna}

Goodness(y) = ' f(x, y)

Tuesday, October 6, 15

gold y =
pred y* =

finna

\'
N

f(x, y)
VV: |

VA: |

Vget: |

Vfinna: |

A,good: |

get
\'
\'

good
A

A

f(x, y*)

N,V: |
VA: |

Vget: |

N,finna; |

A,good: |

Perceptron update rule:

0:=0+rf(x,y) — flz,y")]

Learning idea: want gold y to
have high scores.

Update weights so y would
have a higher score, and y*
would be lower; next time.

f(x.y) - f(x, %)

V,V: +]
N,V: -1
Vifinna: + |
N,finna; - |

Tuesday, October 6, 15

0:=0+rf(x,y) — flz,y")]

Transition features Observation features

9 -o6|-10j11 05100} 08}05}|-13}]-16}J00| 06| 00]|-02)-02)J08}-10}]01]}|-19] 11] 12]-0.

f(x,y) [r]ol2]ofo|i]{ofo]ofofofofo|i]{ofo]o]o]|o0]3

f(z,y™) |[1|o|1|o]jo|1|o]o]|ofofo|ofofi|ofofo|I]|o]f3

The update vector:

_|_r.(+ 1 -1

Tuesday, October 6, 15

Perceptron notes/issues

® |[ssue:does it converge! (generally no)

® Solution: the averaged perceptron

® Can you regularize it? No... just averaging...

® By the way, there’s also likelihood training out
there (gradient ascent on the log-likelihood
function: the traditional way to train a CRF)

® structperc is easier to implement/conceptualize
and performs similarly in practice

22

Tuesday, October 6, 15

Averaged perceptron

® TJo get stability for the perceptron:
Voted perc or Averaged perc

® See HW2 writeup

® Averaging: For t'th example... average together
vectors from every timestep

1 d
et:ZZQt,

t'=1
e Efficiency!?

® |azy update algorithm in HW

23

Tuesday, October 6, 15

