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• Viterbi exercise solution

• CRF & Structured Perceptrons

• Thursday: project discussion + midterm review
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Log-linear models  (NB, LogReg, HMM, CRF...)

• x:  Text Data

• y:  Proposed class  or sequence

• θ:  Feature weights (model parameters)

• f(x,y):  Feature extractor, produces feature vector
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Decision rule:

p(y|x) = 1

Z

exp

�
✓

T
f(x, y)

�
✓

T
f(x, y)| {z }
G(y)

arg max

y

⇤2outputs(x)
G(y⇤)

How to we evaluate for HMM/CRF?  Viterbi!
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Things to do with a log-linear model
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decoding/prediction

p(y|x) = 1

Z

exp

�
✓

T
f(x, y)

�
✓

T
f(x, y)| {z }
G(y)

arg max

y

⇤2outputs(x)
G(y⇤)

[This is new slide after lecture]

x
Text Input

y
Output

θ
Feature 
weights

f(x,y)
Feature extractor 
(feature vector)

obtain

obtain
(just one)

given given
(just one)

given

parameter learning
given

(many pairs)
given given

(many pairs)

feature engineering
(human-in-the-loop)

fiddle with
during

experiments

obtain
in each 

experiment

given
(many pairs)

given
(many pairs)
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HMM as factor graph
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A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

(Additive) Viterbi:

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

p(y, w) =
Y

t

p(wy|yt) p(yt+1|yt)

arg max

y

⇤2outputs(x)
G(y⇤)
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• is there a terrible bug in sutton&mccallum?  
there’s no sum over t in these equations!
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10 An Introduction to Conditional Random Fields for Relational Learning

We can write (1.13) more compactly by introducing the concept of feature functions,
just as we did for logistic regression in (1.7). Each feature function has the
form fk(yt, yt�1, xt). In order to duplicate (1.13), there needs to be one feature
fij(y, y0, x) = 1{y=i}1{y0=j} for each transition (i, j) and one feature fio(y, y0, x) =
1{y=i}1{x=o} for each state-observation pair (i, o). Then we can write an HMM as:

p(y,x) =
1
Z

exp

(

K
X

k=1

�kfk(yt, yt�1, xt)

)

. (1.14)

Again, equation (1.14) defines exactly the same family of distributions as (1.13),
and therefore as the original HMM equation (1.8).
The last step is to write the conditional distribution p(y|x) that results from the
HMM (1.14). This is

p(y|x) =
p(y,x)

P

y

0 p(y0,x)
=

exp
n

PK
k=1 �kfk(yt, yt�1, xt)

o

P

y

0 exp
n

PK
k=1 �kfk(y0t, y0t�1, xt)

o . (1.15)

This conditional distribution (1.15) is a linear-chain CRF, in particular one that
includes features only for the current word’s identity. But many other linear-chain
CRFs use richer features of the input, such as prefixes and su�xes of the current
word, the identity of surrounding words, and so on. Fortunately, this extension
requires little change to our existing notation. We simply allow the feature functions
fk(yt, yt�1,xt) to be more general than indicator functions. This leads to the general
definition of linear-chain CRFs, which we present now.

Definition 1.1

Let Y, X be random vectors, ⇤ = {�k} 2 <K be a parameter vector, and
{fk(y, y0,xt)}K

k=1 be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y|x) that takes the form

p(y|x) =
1

Z(x)
exp

(

K
X

k=1

�kfk(yt, yt�1,xt)

)

, (1.16)

where Z(x) is an instance-specific normalization function

Z(x) =
X

y

exp

(

K
X

k=1

�kfk(yt, yt�1,xt)

)

. (1.17)

We have just seen that if the joint p(y,x) factorizes as an HMM, then the associated
conditional distribution p(y|x) is a linear-chain CRF. This HMM-like CRF is
pictured in Figure 1.3. Other types of linear-chain CRFs are also useful, however.
For example, in an HMM, a transition from state i to state j receives the same
score, log p(yt = j|yt�1 = i), regardless of the input. In a CRF, we can allow the
score of the transition (i, j) to depend on the current observation vector, simply
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HMM as log-linear
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A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

G(y) =

=

[~ SM eq 1.13, 1.14]

X

t

X

i2allfeats

✓ift,i(yt, yt+1, wt)

X

i2allfeats

✓ifi(yt, yt+1, wt)=

X

t

2

4
X

k2K

X

w2V

µw,k1{yt = k ^ wt = w}+
X

k,j2K

�j,k1{yt = j ^ yt+1 = k}

3

5

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

p(y, w) =
Y

t

p(wy|yt) p(yt+1|yt)
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CRF

• advantages

• 1. why just word identity features?  add many more!

• 2. can train it to optimize accuracy of sequences 
(discriminative learning)

• Viterbi can be used for efficient prediction

8

Prob. dist over whole sequence

Linear-chain CRF: whole-
sequence feature function 

decomposes into pairs

log p(y|x) = C + ✓

T
f(x, y)

f(x, y) =
X

t

ft(x, yt, yt+1)
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f(x,y) is...

V,V: 1
V,A: 1
V,N: 0
....
V,finna: 1
V,get: 1
A,good: 1
N,good: 0
...

Two simple feature templates
“Transition features”

“Observation features”

finna get good
V V Agold  y =

ftrans:A,B(x, y) =
X

t

1{yt�1 = A, yt = B}

femit:A,w(x, y) =
X

t

1{yt = A, xt = w}
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-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0f(x, y)

Goodness(y) =

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is 
numeric indexing, though 
sometimes convenient to 
implement as hash table.

finna get good
V V Agold  y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}

✓

T
f(x, y)
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CRF: prediction with Viterbi

• Scoring function has local decomposition
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large overall feature extraction function for an entire structure at once.1 The following parts will
build up these pieces. First, we will focus on inference, not learning.

Question 5.2. [2 points] We provide a barebones version of local emission features, which calculates
the local features for a particular tag at a token position. You can run this function all by itself.
Make up an example sentence, and call this function with it, giving it a particular index and
candidate tag. Show the code for the function call you made and the function’s return value, and
explain what the features mean (just a sentence or two).

Question 5.3. [2 points] Implement features for seq(), which extracts the full feature vector f(x, y),
where x is a sentence and y is an entire tagging sequence for that sentence. This will add up the
feature vectors from each local emissions features for every position, as well as transition features
for every position (there are N � 1 of them, of course). Show the output on a very short example
sentence and example proposed tagging, that’s only 2 or 3 words long.

To define f(x, y) a little more precisely: If f (B)
(t, x, y) means the local emissions feature vector

at position t (i.e. the local emission features function), and f

(A)
(y

t�1, yt, y) is the transition feature
function for positions (t�1, t) (which just returns a feature vector where everything is zero, except
a single element is 1), then the full sequence feature vector will be the vector-sum of all those
feature vectors:

f(x, y) =

TX

t

f

(B)
(t, x, y) +

TX

t=2

f

(A)
(y

t�1, yt)

You implemented f

(B) above. You probably don’t need to bother implementing f

(A) as a stan-
dalone function. You will have to decide on a particular convention to encode the name of a tran-
sition feature. For example, one way to do it is with string concatenation like this, "trans %s %s"
% (prevtag, curtag), where prevtag and curtag are strings. Or you could use a python tuple
of strings, which works since tuples have the ability to be keys in a python dictionary.

In other words: the emissions and transition features will all be in the same vector, just as keys
in the dictionary that represents the feature vector. The transition features are going to be the count
of how many times a particular transition (tag bigram) happened. The emissions features are go-
ing to be the vector-sum of all the local emission features, as calculated from local emission features.

Question 5.4. [2 points] Look at the starter code for calc factor scores, which calculates the A and
B score functions that are going to be passed in to your Viterbi implementation, in order to do
a prediction. The only function it will need to call is local emission features. It should NOT call
features for seq. Why not?

Question 5.5. [4 points] Implement calc factor scores. Make up a simple example (2 or 3 words
long), with a simple model with at least some nonzero features (you might want to use a default-

dict(float), so you don’t have to fill up a dict with dummy values for all possible transitions), and
show your call to this function and the output.

Question 5.6. [2 points] Implement predict seq(), which predicts the tags for an input sentence,
given a model. It will have to calculate the factor scores, then call Viterbi as a subroutine, then
return the best sequence prediction. If your Viterbi implementation does not seem to be working,
use the implementation of the greedy decoding algorithm that we provide (it uses the same inputs
as vit.viterbi()).

1If we were clever with function or OO abstractions it’s actually possible to share code for this... but in practice that’s
too hard, so please just make a new implementation in structperc.py.
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✓

T
f(x, y) =

X

t

✓

T
f

(B)(t, x, y) +
TX

t=2

+f

(A)(yt�1, yt)

Prob. dist over whole sequence

Linear-chain CRF: whole-
sequence feature function 

decomposes into pairs

log p(y|x) = C + ✓

T
f(x, y)

f(x, y) =
X

t

ft(x, yt, yt+1)
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1. Motivation: we want features in our sequence 
model!

2. And how do we learn the parameters?

3. Outline
1. Log-linear models
2. Log-linear Sequence Models:

1. Log-scale additive Viterbi
2. Conditional Random Fields

3. Learning:  the Perceptron

12
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The Perceptron Algorithm

• Perceptron is not a model:
it is a learning algorithm

• Rosenblatt 1957

• Insanely simple algorithm

• Iterate through dataset.
Predict.
Update weights to fix prediction errors.

• Can be used for classification OR 
structured prediction

• structured perceptron

• Discriminative learning algorithm for any 
log-linear model  (our view in this course)
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The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm. The machine 
was connected to a camera that used 20×20 cadmium 
sulfide photocells to produce a 400-pixel image. The 
main visible feature is a patchboard that allowed 
experimentation with different combinations of input 
features. To the right of that are arrays ofpotentiometers 
that implemented the adaptive weights.
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Binary perceptron

14

• For ~10 iterations

• For each (x,y) in dataset

• PREDICT  

• IF y=y*, do nothing

• ELSE update weights

learning rate constant
e.g. r=1

✓ := ✓ + r x

if POS misclassified as NEG:
let’s make it more positive-y next time around

if NEG misclassified as POS:
let’s make it more negative-y next time

✓ := ✓ � r x

y⇤ = POS if ✓Tx � 0

= NEG if ✓Tx < 0
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Structured/multiclass Perceptron

• For ~10 iterations

• For each (x,y) in dataset

• PREDICT  

• IF y=y*, do nothing

• ELSE update weights

15

y

⇤
= argmax

y0
✓

T
f(x, y

0
)

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate constant
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label
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Update rule
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✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label

POS_aw
esome

POS_this POS_oof .... NEG_aw
esome

NEG_this NEG_oof ....

1 1 0 .... 0 0 0 ....

0 0 0 .... 1 1 0 ....

+1 +1 0 .... -1 -1 0 ....

real  f(x,  POS) =

pred  f(x,  NEG) =

y=POS   
x=“this awesome movie ...”
Make mistake: y*=NEG

f(x,  POS) – f(x, NEG) =
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For each feature j in true y but not predicted y*:

For each feature j not in true y, but in predicted y*:

✓j := ✓j � (r)fj(x, y)

✓j := ✓j + (r)fj(x, y)

Update rule

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=1

Features for
TRUE label

Features for
PREDICTED label
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f(x,y) is...

V,V: 1
V,A: 1
V,N: 0
....
V,finna: 1
V,get: 1
A,good: 1
N,good: 0
...

Two simple feature templates
“Transition features”

“Observation features”

finna get good
V V Agold  y =

ftrans:A,B(x, y) =
X

t

1{yt�1 = A, yt = B}

femit:A,w(x, y) =
X

t

1{yt = A, xt = w}
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Goodness(y) =

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is 
numeric indexing, though 
sometimes convenient to 
implement as hash table.

finna get good
V V Agold  y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}

✓

T
f(x, y)
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pred  y* = N V A

f(x, y)
V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

f(x, y*)
N,V: 1
V,A: 1
N,finna: 1
V,get: 1
A,good: 1

f(x,y) - f(x, y*)

V,V: +1
N,V: -1
V,finna: +1
N,finna: -1

finna get good
V V Agold  y =

Learning idea:  want gold y to 
have high scores.
Update weights so y would 
have a higher score, and y* 
would be lower, next time.

Perceptron update rule:
✓ := ✓ + r[f(x, y)� f(x, y⇤)]
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Transition features Observation features
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1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 3 0 0 0
f(x, y⇤)

The update vector:

+1 -1( )+ r

✓ := ✓ + r[f(x, y)� f(x, y⇤)]
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Perceptron notes/issues

• Issue: does it converge? (generally no)

• Solution: the averaged perceptron

• Can you regularize it?  No...  just averaging...

• By the way, there’s also likelihood training out 
there (gradient ascent on the log-likelihood 
function: the traditional way to train a CRF)

• structperc is easier to implement/conceptualize 
and performs similarly in practice

22
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Averaged perceptron

• To get stability for the perceptron:
Voted perc or Averaged perc

• See HW2 writeup

• Averaging: For t’th example... average together 
vectors from every timestep

23

When debugging, you should make new A and B examples that are very simple. This will
test different code paths. Also you can try the randomized test() from the starter code (posted to
website’s starter code on Oct 4).

Look out for negative indexes as a bug. In python, if you use an index that’s too high to be
in the list, it throws an error. But it will silently accept a negative index ... it interprets that as
indexing from the right.

3 Averaged Perceptron

[5 total points]

We will be using the following definition of the perceptron, which is the multiclass or struc-
tured version of the perceptron. The training set is a bunch of input-output pairs (x

i

, y

i

). (For
classification, y

i

is a label, but for tagging, y
i

is a sequence).

• For 10 or so iterations, iterate through each (x

i

, y

i

) pair in the dataset, and for each,

– Predict y⇤ := argmax

y

0
✓

T
f(x

i

, y

0
)

– If y
i

6= y

⇤: then update ✓ := ✓

(old)
+ rg

where r is a fixed step size (e.g. r = 1) and g is the “gradient” vector, meaning a vector that will
get added into ✓ for the update, specifically

g = f(x

i

, y

i

)| {z }
feats of true output

� f(x

i

, y

⇤
)| {z }

feats of predicted output

Both in theory and in practice, the predictive accuracy of a model trained by the structured
perceptron will be better if we use the average value of ✓ over the course of training, rather than
the final value of ✓. This is because ✓ wanders around and doesnt converge (typically), because it
overfits to whatever data it saw most recently. After seeing t training examples, define the averaged

parameter vector as

¯

✓

t

=

1

t

tX

t

0=1

✓

t

0 (1)

where ✓

t

0 is the weight vector after t

0 updates. (We are counting t by the number of training
examples, not passes through the data. So if you had 1000 examples and made 10 passes through
the data in order, the final time you see the final example is t = 10000.) For training, you still use
the current ✓ parameter for predictions. But at the very end, you return the ¯

✓, not ✓, as your final
model parameters to use on test data.

Directly implementing Equation 1 would be really slow. So here’s a better algorithm. This is
the same as in Hal Daume’s CIML chapter on perceptrons, but adapted for the structured case (as
opposed to Daume’s algorithm, which assumes binary output). Define g

t

to be the update vector
g as described earlier. The perceptron update can be written

✓

t

= ✓

t�1 + rg

t

Thus the averaged perceptron algorithm is, using a new “weightsums” vector S,

• Initialize t = 1, ✓0 = ~

0, S0 = ~

0

3

• Efficiency?

• Lazy update algorithm in HW
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