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Today

1. Motivation: we want features in our sequence 
model!

2. And how do we learn the parameters?

3. Outline
1. Log-linear models
2. Log-linear Sequence Models:

1. Log-scale additive Viterbi
2. Conditional Random Fields

3. Learning:  the Perceptron
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These are all log-linear models
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Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =
P

y

pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P

y

pg(y,x|✓0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require

[from Sutton&McCallum reading]
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[OLD SLIDE, OLD NOTATION]
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Ɣ FRPSXWH�IHDWXUHV��[¶V�
Ɣ JLYHQ�ZHLJKWV��EHWDV�
Ɣ FRPSXWH�WKH�GRW�SURGXFW

&ODVVLILFDWLRQ��/RJ5HJ��,�

Decision rule:
  z > 0  ->  Decide y*=POS
z <= 0  ->  Decide y*=NEG

[OLD SLIDE, OLD NOTATION]
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Log-linear models

• The form will generalize to multiclass and sequences...

• x:  Text Data

• y:  Proposed class  or Proposed SEQUENCE

• θ:  Feature weights (model parameters)

• f(x,y):  Feature extractor, produces feature vector

6

argmax

y⇤
G(y⇤)Decision rule:

NB and LogReg can be expressed in this form...
HMMs and CRFs can be expressed in this form...

dot product notation:

p(y|x) / expG(y) , log p(y|x) = C +G(y)

Goodness(y) =
X

i

✓ifi(x, y) ⌘ ✓

T
f(x, y)
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{"POS_The": 3,
 "POS_awesome": 7,
 "POS_quizzical": 0,
...}

f(x,  POS)β
{"POS_The": +0.01,
 "NEG_The": -0.01,
 "POS_awesome": +2.2,
 "NEG_awesome": -2.2,
...}

G(y)  =  βᵀf(x,y)

{"NEG_The": 3,
 "NEG_awesome”: 7,
...}

f(x,  NEG)

Log-linear notation
f(x,y) based on these feature templates:
   key: (class=y AND word=w) 
   value: count of w

βᵀf(x,POS) = ....
βᵀf(x,NEG) = ....
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CRF motivation: best of both worlds

• Want info from features

• Is this the first token in the 
sentence?

• Second? Third? Last? Next to last?

• Word to left?  Right?

• Last 3 letters of this word?  Last 3 
letters of word on left?  On right?

• Is this word capitalized?  Does it 
contain punctuation?

• Want info from POS Context

• What tags are left/right?

• Need joint decoding (Viterbi)
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Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.
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From HMM to CRF

1. An HMM is a type of log-linear model
with “transition” and “emission” features.

2. Do discriminative learning:  Instead of 
learning the weights as simple conditional 
probabilities .... learn them to make high-
accuracy sequence predictions
[The structured perceptron: predict the entire sequence 
(Viterbi), then update weights where there are errors.]

3. Throw in lots more features!
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HMM as factor graph
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A1

y1 y2 y3

A2

B1 B2 B3p(y, w) =
Y

t

p(yt+1|yt)p(wt|yt)

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

You can do Viterbi with these log-scale factor scores.
“Additive Viterbi” let’s call it?

-- See Exercise! --

log p(y, w) =
X

t

log p(wt|yt) + log p(yt+1|yt)
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• stopped here on 10/1
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HMM as log-linear
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A1

y1 y2 y3

A2

B1 B2 B3

log p(y, w) =
X

t

log p(yt|wt) + log p(yt+1|yt)

p(y, w) =
Y

t

p(yt+1|yt)p(wt|yt)

Bt(yt)G(y)
goodness emission

factor score
transition

factor score

A(yt, yt+1)

G(y) =

=

[~ SM eq 1.13, 1.14]

X

t

X

i2allfeats

✓ift,i(yt, yt+1, wt)

X

i2allfeats

✓ifi(yt, yt+1, wt)=

X

t

2

4
X

k2K

X

w2V

µw,k1{yt = k ^ wt = w}+
X

k,j2K

�j,k1{yt = j ^ yt+1 = k}

3

5
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CRF

• prob dist over whole sequence

• linear chain CRF:

• its feature functions decompose over functions of 
neighboring tags.

• advantages

• 1. why just word identity features?  add many more!

• 2. can train it to optimize accuracy of sequences 
(discriminative learning)

16

~

f(~x, ~y) =
X

t

~

ft(~x, yt, yt+1)

log p(~y|~x) = C + ✓

T
~

f(~x, ~y)
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• is there a terrible bug in sutton&mccallum?  
there’s no sum over t in these equations!

17

10 An Introduction to Conditional Random Fields for Relational Learning

We can write (1.13) more compactly by introducing the concept of feature functions,
just as we did for logistic regression in (1.7). Each feature function has the
form fk(yt, yt�1, xt). In order to duplicate (1.13), there needs to be one feature
fij(y, y0, x) = 1{y=i}1{y0=j} for each transition (i, j) and one feature fio(y, y0, x) =
1{y=i}1{x=o} for each state-observation pair (i, o). Then we can write an HMM as:

p(y,x) =
1
Z

exp

(

K
X

k=1

�kfk(yt, yt�1, xt)

)

. (1.14)

Again, equation (1.14) defines exactly the same family of distributions as (1.13),
and therefore as the original HMM equation (1.8).
The last step is to write the conditional distribution p(y|x) that results from the
HMM (1.14). This is

p(y|x) =
p(y,x)

P

y

0 p(y0,x)
=

exp
n

PK
k=1 �kfk(yt, yt�1, xt)

o

P

y

0 exp
n

PK
k=1 �kfk(y0t, y0t�1, xt)

o . (1.15)

This conditional distribution (1.15) is a linear-chain CRF, in particular one that
includes features only for the current word’s identity. But many other linear-chain
CRFs use richer features of the input, such as prefixes and su�xes of the current
word, the identity of surrounding words, and so on. Fortunately, this extension
requires little change to our existing notation. We simply allow the feature functions
fk(yt, yt�1,xt) to be more general than indicator functions. This leads to the general
definition of linear-chain CRFs, which we present now.

Definition 1.1

Let Y, X be random vectors, ⇤ = {�k} 2 <K be a parameter vector, and
{fk(y, y0,xt)}K

k=1 be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y|x) that takes the form

p(y|x) =
1

Z(x)
exp

(

K
X

k=1

�kfk(yt, yt�1,xt)

)

, (1.16)

where Z(x) is an instance-specific normalization function

Z(x) =
X

y

exp

(

K
X

k=1

�kfk(yt, yt�1,xt)

)

. (1.17)

We have just seen that if the joint p(y,x) factorizes as an HMM, then the associated
conditional distribution p(y|x) is a linear-chain CRF. This HMM-like CRF is
pictured in Figure 1.3. Other types of linear-chain CRFs are also useful, however.
For example, in an HMM, a transition from state i to state j receives the same
score, log p(yt = j|yt�1 = i), regardless of the input. In a CRF, we can allow the
score of the transition (i, j) to depend on the current observation vector, simply
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Perceptron learning algorithm

• For ~10 iterations

• For each (x,y) in dataset

• PREDICT  

• IF y=y*, do nothing

• ELSE update weights

19

y

⇤
= argmax

y0
✓

T
f(x, y

0
)

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate constant
e.g. r=0.01

Features for
TRUE label

Features for
PREDICTED label
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Update rule

20

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=0.01

Features for
TRUE label

Features for
PREDICTED label

POS_aw
esome

POS_this POS_oof .... NEG_aw
esome

NEG_this NEG_oof ....

1 1 0 .... 0 0 0 ....

0 0 0 .... 1 1 0 ....

+1 +1 0 .... -1 -1 0 ....

f(x,  POS) =

f(x,  NEG) =

y=POS   
x=“this awesome movie ...”
Make mistake: y*=NEG

f(x,  POS) – f(x, NEG) =
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21

For binary features...
For each feature j in true y but not predicted y*:

For each feature j not in true y, but in predicted y*:

✓j := ✓j � (r)fj(x, y)

✓j := ✓j + (r)fj(x, y)

Update rule

✓ := ✓ + r[f(x, y)� f(x, y⇤)]

learning rate
e.g. r=0.01

Features for
TRUE label

Features for
PREDICTED label
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Perceptron issues -- for next time

• Does it converge? (sometimes, but generally no)

• Solution: the averaged perceptron
Take weight vectors every once in a while and 
average them

• Can you regularize it?  No...  just averaging...

• By the way ... there’s also likelihood training out 
there

22
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