Logistic Regression
September 17, 2015

Questions?

e From previous lecture?

e From HW?

Naive Bayes Recap

e \What do you remember about classification
with Naive Bayes?

Naive Bayes Recap

e \What do you remember about classification
with Naive Bayes?

e \What statistics do you need to make a
classification?

Naive Bayes: Bag of Words
e BoW - Order independent

e Can we add more features to the model?

Naive Bayes: Bag of Words
e Features statistically independent given class

e Examples of non-independent features?

Independence Assumption
e Correlated features -> double counting

e Can hurt classifier accuracy & calibration

Logistic Regression

e (Log) Linear Model - similar to Naive Bayes
e Doesn’t assume features are independent

e Correlated features don’t “double count”

Input document d (a string...)

L

® Engineer a feature function, f(d), to generate feature vector x

f(d) =

\:

f(d) ——

log(1 + count of “happy”),
Count of “not happy”,

Count of words in my pre-specified word
list, “positive words according to my
favorite psychological theory”,

Count of “of the”,
Length of document,

Count of “happy”,
(Count of “happy”) / (Length of doc),

X

Typically these use feature templates:
Generate many features at once

for each word w:
- ${w} _count
- ${w} _log | _plus_count
- ${w}_with_NOT _before_it_count

e Not just word counts. Anything that might be useful!

® Feature engineering: when you spend a lot of trying and testing new

features. Very important for effective classifiers!! This is a place to
put linguistics in.

Classification: LogReg (I)

First, we'll discuss how LogReg works.

Classification: LogReg (I)

First, we'll discuss how LogReg works.
Then, why it's set up the way that it is.

Application: spam filtering

Classification: LogReg (I)

e compute features (xs)

Classification: LogReg (I)

e compute features (xs)

[L; = (count “nigerian”, count “prince”, count “nigerian prince”)]

Classification: LogReg (I)

e compute features (xs)

[L; = (count “nigerian”, count “prince”, count “nigerian prince”)]

e given weights (betas)

Classification: LogReg (I)

e compute features (xs)

[L; = (count “nigerian”, count “prince”, count “nigerian prince”)]

e given weights (betas)

[B =(-10, -10, 4.0)]

Classification: LogReg (I)

e compute features (x’s)
e given weights (betas)
e compute the dot product

Classification: LogReg (I)

e compute features (x’s)
e given weights (betas)
e compute the dot product

4 p
| X|

Z = Z (5Tl
i=0

o J

Classification: LogReg (Il)

e compute the dot product
| X |

& = Z 5z‘93z‘
i=0

Classification: LogReg (Il)

e compute the dot product
| X |

2 = Zﬁz‘iﬁz‘

e compute the Iogistici?&nction

e))
e 1
P p— p—
(z) ez +1 1l +4+e %
1\ J

LogReg Exercise

[features: (count “nigerian”, count “prince”, count “nigerian prince”)]

T =01, 1, 1)

B=(10, -10, 4.0)

P(z) =777

LogReg Exercise

Classification: LogReg

OK, let’'s take this step by step... | X|
& = Bix;
e Why dot product? ;

Classification: LogReg

OK, let’'s take this step by step... | X|
& = Zﬁz‘wi
e \Why dot product? s

e Why would we use the logistic function?

Classification: Dot Product

- ~
| X|
g = E 5z$z
N i Y

Intuition: weighted sum of features

All linear models have this form!

NB as Log-Linear Model

Recall that Naive Bayes is also a linear model...

NB as Log-Linear Model

e \What are the features in Naive Bayes?

e \What are the weights in Naive Bayes?

NB as Log-Linear Model

P(spam|D) o« P(spam) - H P(w;|spam)
w; €D

NB as Log-Linear Model

P(spam|D) o« P(spam) - H P(w;|spam)
w; €D

P(spam|D) < P(spam) + || -P(w;|spam)®
w; EVocab

NB as Log-Linear Model

P(spam|D) o« P(spam) - H P(w;|spam)
w; €D

P(spam|D) < P(spam) + || -P(w;|spam)®
w; EVocab

log[P(spam|D)] o log|P(spam)] + Z z; - log[P(w;|spam)]
w; €EVocab

NB as Log-Linear Model

In both NB and LogReg

we compute the dot product!

Logistic Function

s . . N
e
P p— p—
(Z) e + 1 l+e*
_ Y

What does this function look like?

What properties does it have?

Logistic Function

€ 1
P = =
(z) ez + 1 1l+e =
1+ —

0:5+

=
/

-6 -4 =2 0 2 4 6

Logistic Function

e |ogistic function P(z): R — [0,1]

Logistic Function

e |ogistic function P(z): R — [0,1]

e decision boundary is dot product = 0 (2 class)

Logistic Function

e |ogistic function P(z): R — [0,1]

e decision boundary is dot product = 0 (2 class)

PE@) S g,
e comes from linear log odds '€ T— P(z) — ;Bm

NB vs. LogReg

e Both compute the dot product

e NB: sum of log probs; LogReg: logistic fun.

Learning Weights

e NB: learn conditional probabilities separately
via counting

e LogReg: learn weights jointly

Learning Weights

e given: a set of feature vectors and labels

e goal: learn the weights.

Learning Weights

oo Zo1 --- Tom Yo
10 211 --- Ti1m Y1
Ln0 Lnl ..o Lnm Yn

n examples; xs - features; ys - class

Learning Weights

We know:

s . . N\
€
P p— p—
(z) ez +1 l+e*
_ Y

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

Learning Weights

So let’s try to maximize probability of the entire

dataset - maximum likelihood estimation
4)

/BMLE — a'rgmg'XlogP(y07 I 7yn|x07 “oe 7xn;/6)
\ 4

Learning Weights

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

/BMLE — a'rgm’Ba‘XlogP(yOJ e Jyn|x07 e 7xn; /B)

4 |X|)

— arg mnglog P(yz'lxi§ :3)

S =0 J

Learning the weights

Maximize the training set’s (log-)likelihood?

6MLE = arg mgx logp(ylyn|x1$’n7 /B)

log p(y1--Yn|1.-2n, B) = Y log p(yilai,) = > _log {11) . ifz- _ 0}

where p; = p(y; = 1|z, B)

® No analytic form, unlike our counting-based
multinomials in NB, n-gram LM’s, or Model |.

® Use gradient ascent: iteratively climb the log-
likelihood surface, through the derivatives for
each weight.

® |uckily, the derivatives turn out to look nice...

Gradient ascent

Loop while not converged (or as long as you can):
For all features j, compute and add derivatives:

ﬂ(new) 5(old) +n

J 8/83

¢(B)

Ba| |

B

ol

0B’

¢ :Training set log-likelihood

7]: Step size (a.k.a. learning rate)
ey ﬁ) Gradient vector
OB/ (vector of per-element
derivatives)

This is a generic optimization technique.
Not specific to logistic regression! Finds
the maximizer of any function where

, You can compute the gradient.

LogReg Exercise

[features: (count “nigerian”, count “prince”, count “nigerian prince”)]

[B0 =10, -3.0, 2.0)]_> 63% accuracy

LogReg Exercise

[features: (count “nigerian”, count “prince”, count “nigerian prince”)]

~\

B0) =(1.0, -3.0, 2.0)| =e—) 63% accuracy

J

~\

B =05, 10, 3.0)]| m—

J

LogReg Exercise

[features: (count “nigerian”, count “prince”, count “nigerian prince”)]

~\

B0) =(1.0, -3.0, 2.0)| =e—) 63% accuracy

J

~\

B =05, 10, 3.0)]| m—

J

~\

B2 = (10, 10, 4.0) =—

. J

Pros & Cons

e LogReg doesn’'t assume independence
o better calibrated probabillities

e NB is faster to train; less likely to overfit

NB & Log Reg

e Both are linear models: | X |

o= Z Bix;
i=0

e Training is different:
o NB: weights trained independently
o LogReg: weights trained jointly

LogReg: Important Detalls!

e Overfitting / regularization
e Visualizing decision boundary / bias term
e Multiclass LogReg

You can use scikit-learn (python) to test it out!

Regularization

® Just like in language models, there’s a danger of overfitting the
training data. (For LM’s, how did we combat this?)

® One method is count thresholding: throw out features that occur
in < L documents (e.g. L=5). This is OK, and makes training
faster, but not as good as....

® Regularized logistic regression: add a new term to penalize

solutions with large weights. Controls the bias/variance
tradeoff.

5MLE = arg mgx [logp(yl--yn|331--$m 5)]

gheetl = arg max | 1og p(y1-Ynlz1.-2n, B) — A (B5)?

J
“Regularizer constant”:/ Vv

srengeh of penslty or12 reguriver

" Squared distance from origin

Visualizing a classifier in feature space

“Biasiterm”
Feature vector z = (1, count “happy”, count “hello”,...)
Weights/parameters (3 =
50% prob where w -
Predict y=1 when — N X
T © O
B'x>0 3 o- B
Predict y=0 when ‘E, X
T s N
z<0
ble < S 0 X
2 ‘ B T
L1 X
[o -
> | | | T | |
& : 0 1 2 3 4 5

T Count(“happy”)

Binary vs Multiclass logreg

® Binary logreg: let x be a feature vector,and y
either O or |

B is a weight vector across the x features.

X T
p(y — 1|$,ﬁ) — 1 j_ 5)55(,33?33)

® Multiclass logreg:y is a categorical variable, attains
one of several values in Y

Each By is a weight vector across all x features.

exp(By)
Ey’ey exp('_-yr’m)

p(ylz, B) =

