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Today

® Probability Review
® “Naive Bayes” classification
® Python demo
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Probability Theory Review

:ZP(A:a)

a

Conditional Probability — P(AB)
P(B)
Chain Rule = P(A|B)P(B)
=Y P(A,B=0b)

Law of Total Probability b

= » P(A|B=0b)P(B=b)
b

Disjunction (Union) P(AV B) =

Negation (Complement) P(—A) =
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Probability Theory Review

1:ZP(A:CL)

a

Conditional Probability P(A|B) _ PP(?BB))
Chain Rule P(AB) = P(A|B)P(B)

P(A)=% P(A,B=b)

Law of Total Probability

P(A) = Eb: P(A|B = b)P(B = b)

Disjunction (Union) P(Av B)=P(A)+ P(B) — P(AB)
Negation (Complement) P(-A)=1- P(A)

3
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Bayes Rule
P(DIH)
Model: how hypothesis causes data

> D: observed
data / evidence

H: unknown P

Bayesian inference

P(H|D)

Bayes Rule tells you how to flip the conditional.
Useful if you assume a generative process for your data.

Likelihood ;I‘iOI’
P(D H)P(H
|
| 1
Posterior Normalizer

Rev.Thomas Bayes
c.1701-1761

4
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Bayes Rule and its pesky denominator

Likelihood Prior
NS
~ P(dh)P(h)  P(d|h)P(h)
P(hl|d) = P(d) o, P(dW)P(h) Constant
w.r.t. h

X “Proportional to”

P(h|d) X P(d‘h)P(h) Implicitly for varying H.
This notation is very common, though
/ slightly ambiguous.
Unnormalized posterior
By itself does not sum to I!
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Bayes Rule for classification inference
. Assume a generative process, P(w | y) @
doc label >
y <
Inference problem: given w, what is y?
Authorship problem: classify a new text.
Is it y=Anna or y=Barry!?

Observe w: Look at random word in the new text.
It is abracadabra.

P(y=A | w=abracadabra) ?
P(y | w) = P(wly) P(y) / P(w)
P(y): Assume 50% prior prob.

P(W ‘ ),) abracadabra gesundheit
Calculate from Anna 5 per 1000 words 6 per 1000 words
pr evious data Barry 10 per 1000 words 1 per 1000 words

6
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Bayes Rule as hypothesis vector scoring

o Sum to |?
3- P(H = h)
| RN Prior
5 P(E|H = h)
Sl R Likelihood
> P(E|H = h)P(H = h)
o] Unnorm. Posterior
Normalize @ 1
< EP(E|H = h)P(H = h)
IS Posterior

7
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o] [02,02,06 Sum to |!?
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Bayes Rule as hypothesis vector scoring

Multiply

v

0.0 04 038

Normalize

] [0.2,0.2,0.6]

00 04 038

a b C

{ [0.2,0.05,0.05]

0.0 04 038

0.0 04 038

Sum to |?
P(H = h) Yes
Prior
P(E|H = h) No
Likelihood

P(E|H = h)P(H = h)
Unnorm. Posterior

1
EP(E|H = h)P(H = h)
Posterior

7
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Bayes Rule as hypothesis vector scoring

o] [02,02,06 Sum to |!?
S P(H = h) Yes
| RN Prior
=] 10.2,0.05,0.05]
teply (s Likelihood
371 [0.04,0.01,0.03]
> P(E|H = h)P(H = h) No
ol Unnorm. Posterior
Normalize o | [0.500,0.125,0.375] |
; EP(E|H = h)P(H = h) Yes
g Posterior

7
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Text Classification
with
Naive Bayes




Classification problems

® Given text d, want to predict label y

s this restaurant review positive or negative!
s this email spam or not!

Which author wrote this text?

(Is this word a noun or verb?)

® d:documents, sentences, etc.
® y:discrete/categorical variable

Goal: from training set of (d,y) pairs, learn
a probabilistic classifier f(d) = P(y|d)
(“supervised learning”)

9

Thursday, September 10, 15



Features for model: Bag-of-words

it 6
~ I 5
| love this movie! It's sweet, _ _ the 4
but with satirical humor. The 5 fairy  always love o ! to 3
dialogue is great and the anlél WhimSicalareit | and 3
adventure scenes are fun... friend S anvone seen 2
It manages to be whimsical nhappy dialogue yet 1
and romantic while laughing adventure "ecommend would 1
at the conventions of the whoSWeet of satirical whimsical 1
movie -
fairy tale genre. | would it I but to romantic I times 1
recommend it to just about several yet sweet 1
anyone. I've seen it several the 294N it the - satirical 1
times, and I'm always happy o sconee | . LU adventure 1
to see it again whenever | e the tir’;]eesmanage genre 1
have a friend who hasn't | and and fairy 1
. about while h 1
seen it yet! whenever have umor
_conventions have 1
A with great 1

DT NMY  Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words 1s ignored (the bag of words assumption) and we make use of the frequency of each word.

|0
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Levels of linguistic structure

Discourse

CommunicationEvent(e) SpeakerContext(s)

Semantics Agent(e,Alice) TemporalBefore(e, s)
Recipient(e, Bob)

ntax VP
4 NP / N op |
I /7 '\ I

NounPrp VerbPast Prep  NounPrp Punct
Words Alice |talked [|to |Bob .
Morphology talk||-ed
Characters Aliclel tlalkled tol Blob.
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Levels of linguistic structure

Words

Alice

Characters

talked

to

Bob
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Levels of linguistic structure

Words are fundamental units of meaning

Words

Alice

Characters

talked

to

Bob
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Levels of linguistic structure

Words are fundamental units of meaning

Words

and easily identifiable™

Alice

Characters

*in some languages

talked

to

Bob
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How to classify with words?

® Approach #l:use a predefined dictionary
(or make one up)
Human Knowledge

® e.g. for sentiment....

9 ¢¢ ) ¢¢ I”

® score += | for each “happy”, ‘awesome”, “coo

® score -=| for each“sad”,“awful”’,““bad”
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How to classify with words?

® Approach #l:use a predefined dictionary
(or make one up)
Human Knowledge

® e.g. for sentiment....
9 ¢ 9 «¢ I”

® score += | for each “happy”, ‘awesome”, “coo

® score-= 1| for each“sad”,“awful”,"bad”
® Approach #2: use labeled documents
Supervised Learning

® [earn which words correlate to positive vs.
negative documents

® Use these correlations to classify new
documents
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Supervised learning

Many Labeled o
Examples Training Model

=2 =B

>

Parameters

(d="..", y=B)
(d="..", y=A)

Classify [leE = u8yEa
new texts

G5 y=)

Thursday, September 10, 15



Supervised learning: Generative model

Many Labeled o
Examples Training Model P(y)

=2 =B

>

Parameters lxd{sNB%

(d="...", y=B)
(d="..., y=A)

Classify [sE =0
new texts

G5 y=)
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Multinomial Naive Bayes

P(y | wlT..wT) x P(y) P(wy..wr | y)

Tokens in doc

Predictions:

Predict class arg max P(Y =y | wy..wr)

or, predict prob of classes...
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Multinomial Naive Bayes
Py | wr..wr) < P(y) Plwi..wr | y)

T
Tokens in doc l the “Naive Bayes”
HP w; | y) assumption:

conditional indep.

Parameters: P (w | y) for each document category y and wordtype w

P(y) prior distribution over document categories y

Learning: Estimate parameters as frequency ratios; e.g.

#(w occurrences in docs with label y)

+ «

P p—
(w ]y, a) #(tokens total across docs with label )

Predictions:

Predict class arg max P(Y =y | wy..wr)

or, predict prob of classes...

+ Va
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