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1 Topics on the midterm

Language concepts

• Translation issues: word order, multiword translations
• Human evaluation
• Parts of speech
• Morphology

Non-structured models

• Probability theory: Marginal probs, conditional probs, law(s) of total probability,
Bayes Rule.
• Maximum likelihood estimation
• Naive Bayes
• Logistic regression (both binary and multiclass).

• Understanding the model formula and likelihood equation is important. The
gradient-based learning algorithm will not be covered.

• N-gram Markov language models
• IBM Model 1
• Relative frequency estimation and pseudocount smoothing
• The expectation-maximization algorithm

• Besides its usage in Model 1, you need to know how to apply it to a different
model if necessary.

• Classifier evaluation: precision and recall

Structured models

• Hidden Markov models, Viterbi algorithm
• Finite state automata, regular languages
• Finite state transducers
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2 Finite-state things

Consider this FSA:

a a

b

b

!

b

Question 1. For each of the following strings, is it accepted or not accepted by this FSA?

1. ab

2. a

3. aabbb

4. aba

5. aa

Question 2. Write a regular expression that corresponds to the same regular language
represented by this FSA.

Question 3. The FSA above is bigger than it needs to be. There exists an FSA with a
smaller number of edges that represents the same regular language. Please draw this
FSA (or some FSA with fewer edges, in case there are others.)

Question 4. Draw an FST that removes repeated s’s on the end of a word. For example,
it would translate yesssss to yes. Otherwise, it passes through the string unchanged. It
should pass through strings without s’s on the end.

3 Bayes Rule and EM

You are in a noisy bar diligently studying for your midterm, and your friend is trying to
get your attention, using only a two word vocabulary. She has said a sentence but you
couldn’t hear one of the words:

(w1 = hi, w2 = yo, w3 =???, w4 = yo)
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Question 5. At first, you guess that your friend was generating words from this bigram
LM:

p(hi|hi) = 0.7 p(yo|hi) = 0.3
p(hi|yo) = 0.5 p(yo|yo) = 0.5

Given these parameters, what is the posterior probability of whether the missing word
is “hi” or “yo”?

Question 6. Now you want to learn your friend’s transition model, based on this utter-
ance. Zero pseudocounts. Since there’s missing data, you must use the EM algorithm.
Show the results of one step of the EM algorithm, where the previous question was the
first E-step. So just do an M-step and show the resulting parameters. For this question,
don’t bother with START and END transitions. Use zero pseudocounts.

4 Language Models

We consider a language over the three symbols ‘A’, ‘B’, and ‘C’.

Question 7. Consider the training ‘corpus’

(A,B,C,B,A,A,B,C)

• Under a bigram language model with zero pseudocounts, what is the probability of
the observation (A,C,B)?

• Under a bigram language model with zero pseudocounts, what is the probability of
the observation (A,B,C)?

Question 8. The following questions concern the basic pseudocount smoothing estimator
we used in problem set 1.

1. Pseudocounts should only be added when you have lots of training data. True or
False?

2. Pseudocounts should be added only to rare words. The count of common words
should not be changed. True or False?

3. What happens to Naive Bayes document posteriors (for binary classification), if you
keep increasing the pseudocount parameter really really high?

(a) They all become either 0 or 1.

(b) They all become 0.5.

(c) Neither of the above.

Question 9. The following True/False questions concern the use of an OOV tokens.
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1. The use of OOV tokens is necessary for ngram language models. It is not necessary
in machine translation and document classification.

2. The OOV token should be assigned pseudocounts.

Question 10. Here is a bigram LM.

p(a|START) = 1.0 p(b|START) = 0 p(END|START) = 0
p(a|a) = 0.7 p(b|a) = 0.3 p(END|a) = 0
p(a|b) = 0.2 p(b|b) = 0.5 p(END|b) = 0.3

Write a regular expression whose corresponding regular language contains all strings
with non-zero probability under the LM, and does not include any zero probability strings.
Hint: it may be useful to draw a diagram depicting the weighted FSA corresponding to
this Markov model.

5 Classification

We seek to classify documents as being about sports or not. Each document is associated
with a pair (~x, y), where ~x is a feature vector of word counts of the document and y is the
label for whether it is about sports (y = 1 if yes, y = 0 if false). The vocabulary is size 3,
so feature vectors look like (0, 1, 5), (1, 1, 1), etc.

5.1 Naive Bayes

Consider a naive Bayes model with the following conditional probability table:

word type 1 2 2
P (w | y = 1) 1/10 2/10 7/10
P (w | y = 0) 5/10 2/10 3/10

and the following prior probabilities over classes:

P (y = 1) P (y = 0)
4/10 6/10

Question 11. 1. What is the probability that the document ~x = (1, 0, 1) is about sports?

2. What is the probability that it is not about sports?
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Question 12. 1. Suppose that we know a document is about sports, i.e. y = 1. True or
False, the Naive Bayes model is able to tell us the probability of seeing x = (0, 1, 1)
under the model.

2. If True, what is the probability?

Question 13. Now suppose that we have a new document that we don’t know the label
of. What is the probability that a word in the document is wordtype 1?

5.2 Logistic Regression

Question 14. Consider a logistic regression model with weights β = (0.5, 0.25, 1). A given
document has feature vector x = (1, 0, 1). NOTE: for this problem you will be exponen-
tiating certain quantities. You do not need to write out your answer as a number, but
instead in terms of exp() values, e.g., P = 1 + 2exp(−1).

1. What is the probability that the document is about sports?

2. What is the probability that it is not about sports?

Question 15. Consider a logistic regression model with weights β = (−ln(4), ln(2),−ln(3)).
A given document has feature vector x = (1, 1, 1). Now, please provide your answer in
the form of a fraction a

b
.

1. What is the probability that the document is about sports?

Question 16. Consider a logistic regression model with weights β = (β1, β2, β3). A given
document has feature vector x = (1, 0, 1).

1. What is a value of the vector β such that the probability of the document being about
sports is 1 (or incredibly close)?

2. What is a value of the vector β such that the probability of the document being about
sports is 0 (or incredibly close)?

5.3 Evaluation

You run a classifier on a test set, with the following results:
Labeled sports Labeled non-sports

Predicted sports 10 20
Predicted non-sports 5 2000

Question 17. What is the precision of your classifier?

Question 18. What is the recall of your classifier?

Question 19. What is the accuracy of your classifier? Is this a useful way to evaluate your
classifier here? Why or why not?
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6 Viterbi

Question 20. Here’s a proposal to modify Viterbi to use less memory: for each token
position t, instead of storing all Vt[1]..Vt[K], instead store one probability, for the best path
so far. Can we compute an optimal solution in this approach? Why or why not?

Question 21. Consider the Eisner ice cream HMM (from J&M 3ed ch 7, Figure 7.3), and a
sequence of just one observation, ~w = (3). There are only 2 possible sequences, (HOT) or
(COLD). Calculate both their joint probabilities (p(w, y)). Which sequence is more likely?

Question 22. Now consider the observation sequence ~w = (3, 1, 1). Perform the Viterbi
algorithm on paper, stepping through it and drawing a diagram similar to Figure 7.10.
What is the best latent sequence, and what is its probability? To check your work, try
changing the first state; is the joint probability better or worse? (To really check your
work you could enumerate all 8 possibilities and check their probabilities, but that is not
fun without a computer.)

Question 23. Compare how the Viterbi analyzed this sequence, in contrast to what a
greedy algorithm would have done. Is it different? Why? Why is this a different situation
than the previous example of ~w = (3)?

7 Language stuff

Question 24. Each of the following sentences has an incorrect part-of-speech tag. Identify
which one and correct it. (If you think there are multiple incorrect tags, choose the one
that is the most egregious.) We’ll use a very simple tag system:

• NOUN – common noun or proper noun
• PRO – pronoun
• ADJ – adjective
• ADV – adverb
• VERB – verb, including auxiliary verbs
• PREP – preposition
• DET – determiner
• X – something else

1. Colorless/ADV green/ADJ clouds/PRO sleep/VERB furiously/ADV ./X

2. She/PRO saw/VERB herself/PRO through/PREP the/ADJ looking/ADJ glass/NOUN
./X

3. Wait/NOUN could/VERB you/PRO please/X ?/X
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Question 25. The Penn Treebank’s tokenization convention splits “auxiliary+not” con-
tractions in English, i.e. “I can’t see it” is tokenized as a sequence of length 5, [[I ca n’t see
it]]. Give an argument whether this is a good idea, from the perspective of being able to
train part-of-speech taggers.

Question 26. Can or should contraction splitting be done for English-language Twitter
data? Why or why not?

Question 27. IBM Model 1 has many shortcomings as a model for machine translation.
Pick two of them and explain them, in one or two sentences for each.

8 EM derivation

[Note: this is much longer than questions you should expect to see on the midterm. We’re includ-
ing it if you want to understand EM more in-depth.]

EM is used when you have a model with observed variables x and hidden variables
z; for example, in the IBM Models, x are words and z are alignment variables. In this
problem we will show that the weighted counting that we do in the M-step corresponds
to maximizing a weighted log-likelihood of the data, where the weights are the posterior
values from the last E-step.

Say we’re estimating the probability of the word “ctfu” (see urbandictionary.com for
semantic details); call this parameter θ. Every i = 1..N is a token position, and the ob-
served variable xi is xi = 1 if that token is the word “ctfu”, and xi = 0 otherwise. In
the simple case without hidden variables, we’ve already seen that from the likelihood
function

p(~x|θ) =
∏
i

p(xi|θ) =
∏
i

θxi(1− θ)xi

we can derive the maximum likelihood estimator of θ by taking the derivative of the
log-likelihood and setting it to zero, and finding the value of θ where the derivative is 0,
yielding

θ̂(MLE) =

∑
i xi
N

Next: assume there are binary latent variables zi and that we only want to estimate
the probability among tokens that have zi = 1; tokens with zi = 0 should be ignored.
(With some care you can frame Model 1 in this way; this is a simplification that’s easier
to analyze.) We’re not going to worry about where the zi’s come from. The likelihood
function is:

p(xi|zi, θ) = (θ)xizi(1− θ)(1−xi)zi

Question 28. Write p(xi = 1|zi = 1, θ) in terms of θ. You can get this by just plugging in
the values of xi and zi then simplifying.
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Question 29. Write p(xi|zi = 1, θ) in terms of xi and θ. You can get this by just plugging
in the value of zi and simplifying.

Question 30. Why does this likelihood function ignore cases where zi = 0?

We want to solve argmaxθ p(x|z, θ), which is equivalent to solving argmaxθ log p(x|z, θ).
So take the log-likelihood and its derivative with respect to θ, and set the derivative to
zero. Since the log-likelihood function is concave, the optimal solution will be there. The
first few steps of this is:

log p(x|z, θ) =
∑
i

log p(xi|zi, θ) (1)

=
∑
i

zi [xi log θ + (1− xi) log(1− θ)] (2)

∂

∂θ
log p(x|z, θ) =

∑
i

zi

(
xi
θ
+

1− xi
1− θ

∂(1− θ)
∂θ

)
(3)

=
∑
i

zi

(
xi
θ
− 1− xi

1− θ

)
(4)

The first step of the derivative above was just taking the derivative with respect to θ, and
using the fact that (log x)′ = 1/x, and then we applied the chain rule to the thing inside
the log. This is of course a partial derivative, with respect to θ (and not zi); from the
perspective of θ’s derivative, zi is a constant and the rules of calculus say it can just stay
hanging out on the outside there.

If you set the above to zero, it takes just a few more lines of algebra to solve for θ,
which should yield the MLE solution that counts how many tokens i have both xi = 1 as
well as zi = 1, and normalizes out of instances where zi = 1.

θ(MLE) =

∑
i zixi∑
i zi

OK, now for EM. We don’t know the zi’s, but we have probabilistic guesses for them.
(Don’t worry about where those came from, though as you know, in Model 1 it comes
from Bayes Rule using last round’s parameters.) In the E-step we computed posterior
values p(zi = 1|x, θ(old)) at every token i; call one of these qi (which is between 0 and 1).
We’ve learned that in EM, we are supposed to do weighted counting instead of simple
counting for the relative frequency estimator:

θ(WMLE) =

∑
i qixi∑
i qi

Question 31. Derive that this is the solution to the weighted log-likelihood maximization
problem problem, where the qi terms are already set and we want to learn θ,

argmax
θ

∑
i

qi log p(xi|zi = 1, θ) + (1− qi) log p(xi|zi = 0, θ)
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You can use the same argument strategy as in the simple MLE case: find the value of
θ where the derivative of the log-likelihood with respect to θ is equal to zero.

Before you take the derivative, it might be easier to first plug in the likelihood values
to the above equation and simplify it a bit.
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