
CS 585 Problem Set 4: Perceptron and Coreference

Brendan O’Connor and David Belanger

November 16, 2014

Submission Instructions

Your submission will be a mix of a text writeup and code. Unlike last problem set, we
you will be submitting this one on moodle. Upload a file with your text (.doc or .pdf) and
also submit the python files coref.py and perc.py. It is due at 2:15pm on Tuesday Nov 25.

In your text writeup, include your name and collaborators list at the top. (See course
policy here.)

Overview

This problem set has two parts.
First, you will implement a binary classification perceptron, and also the averaging

form of training. This will be done for sentiment analysis (with the same documents as
you used for Naive Bayes in PS2); the averaged perceptron will be implemented with the
averaging strategy you analyzed in PS3.

Second, you will implement and analyze a coreference resolution system. You’ll make
a simple rule-based system, then second, make a system based on the perceptron classifier
you implemented in Part 1. You can still do this section if you don’t complete averaging;
and some parts of the coref section don’t require any perceptron at all.

There are 100 total points; 25 for Part 1 and the rest for the coref part.

1 Part 1: Perceptron Classifier

Get the starter code from http://people.cs.umass.edu/˜brenocon/inlp2014/
ps/ps4.zip.

Get reviews.zip from http://people.cs.umass.edu/˜brenocon/inlp2014/
ps/reviews.zip and unzip it in the same directory as the code where you’re work-
ing. In this part you will only have to edit the starter code of perc.py. The most important
function, trainPerceptron, will be used later for your coref system. But in this section, you

1

http://people.cs.umass.edu/~brenocon/inlp2014/grading.html
http://people.cs.umass.edu/~brenocon/inlp2014/ps/ps4.zip
http://people.cs.umass.edu/~brenocon/inlp2014/ps/ps4.zip
http://people.cs.umass.edu/~brenocon/inlp2014/ps/reviews.zip
http://people.cs.umass.edu/~brenocon/inlp2014/ps/reviews.zip

will also call it from sentimentTest within perc.py, which gets executed if you run it from
the command line (or run it in an interactive interpreter if you like).

trainPerceptron is currently incomplete. It loops over all the examples for as many
iteration passes as specified, but it doesn’t do any updates. There’s no averaging either.

We have set up sentimentTest so that it loads the data, and then calls trainPerceptron
on it. It also contains an evaluation function, which evaluates the accuracy of the cur-
rent model on the test set. (If you like cool programming stuff, you’ll see that it uses a
Python closure passed as a callback to do this.) It’s set up so that at every iteration of the
perceptron trainer, it prints out the test set accuracy of the current model.

Note that labels are boolean objects, and feature vectors are represented as Python
dictionaries, mapping from {name: value}.

Because this is a binary classification perceptron, we don’t use the f(x, y) mathemati-
cal notation, but instead just say a feature vector is f(x), where f is the feature extraction
function. We’ve pre-extracted feature vectors for you. They are just word counts from
movie reviews. The labels y are Python boolean variables, and True if it’s a positive re-
view, otherwise False if it’s negative. Since this is a binary classification perceptron, the
prediction rule is: predict y=True if θTf(x) > 0, otherwise predict y=False.

Question 1.1. [2 points] Read evalClassifier. Explain in English what the line that updates
num correct is doing.

Question 1.2. [2 points] Run sentimentTest out of the box without changing anything.
What accuracy does it get? Why it it so bad? (Hint: what is the model predicting?)

Question 1.3. [8 points] Implement the basic perceptron algorithm, inside of trainPercep-
tron. Use the stepSize parameter that’s passed in to control the size of the update. This
was called η in PS3. It’s sometimes also called a “learning rate”.

Run trainPerceptron with the parameters given in the starter code. It should produce
the following result. Copy and paste the output you get. [Updated 11/16: updated the
output to fix a small bug in our solution.]

Loading data
Num pos vs negative in test set: 407 pos, 401 neg, 808 total
Training perceptron
Training on 0’th pass through the training set
Classifier accuracy = 624/808 = 0.772277227723
Training on 1’th pass through the training set
Classifier accuracy = 659/808 = 0.815594059406
Training on 2’th pass through the training set
Classifier accuracy = 671/808 = 0.830445544554
Training on 3’th pass through the training set
Classifier accuracy = 673/808 = 0.832920792079
Training on 4’th pass through the training set
Classifier accuracy = 674/808 = 0.834158415842
Learned weights for 17987 features from 1596 examples
Accuracy of final model:
Classifier accuracy = 674/808 = 0.834158415842

2

17987 total features, showing highest and lowest weights
Top weights:
[(u’great’, 24), (u’love’, 18), (u’excellent’, 18),
(u’favorite’, 16), (u’best’, 15), (u’loved’, 15),
(u’amazing’, 15), (u’also’, 15), (u’you’, 14), (u’subtle’, 13)]
Bottom weights:
[(u’bad’, -27), (u’worst’, -25), (u’boring’, -21),
(u’even’, -20), (u’awful’, -20), (u’wonder’, -19),
(u’poor’, -17), (u’?’, -16), (u’nothing’, -15), (u’looks’, -15)]

Question 1.4. [2 points] Why are the weight values all integers?

Question 1.5. [4 points] Now play around with different settings of the numPasses pa-
rameter. How high do you have to make it in order for test set accuracy to converge?
What does it converge to?

Question 1.6. [10 points] Implement the averaged perceptron. When useAveraging=True
is passed in to trainPerceptron, it must return the averaged weight vector, instead of the
last weight vector.

You can follow the pseudocode from PS3. This will require new code in several places
in trainPerceptron: you have to initialize the cumulative sum vector and the t counter, and
you have to update them at the perceptron updates, and use them atthe end to calculate
the averaged weights.

Do not start saving weight values until after the first iteration. This is because the
weights aren’t very good at the very beginning.

Feel free to use a new function for this, but please maintain the API of trainPerceptron
as we asked.

Recall that when training an averaged perceptron, you still use the current weight
vector to make predictions during learning; the averaged version is never used during
learning.

Averaging tends to give more stable answers. It is difficult to see in this sentiment
example, because the test set is so small. But it will be very effective in Part 2.

Please copy and paste the output from one training run. The weight vectors should
no longer be integers.

Question 1.7. EXTRA CREDIT: [Up to 4 points]
Turn on shuffling, which randomizes the order that the examples are iterated over.

How much variability do you see with regards to solutions? Run some experiments to
assess whether averaging improves stability and results, and report your findings.

You can do this a little bit with the sentiment dataset, but the effects are much clearer
with the coreference problem in Part 2.

1.1 Features

Suppose that we have an input d (such as a document) and we want to represent it with
a feature vector f (stored in a sparse manner as a dictionary from string to number). A

3

standard technique in NLP is to implement feature extraction via a set of feature templates.
Each feature template can be thought of as a pattern that instantiates many different fea-
tures.

For example, suppose we want to train a classifier that takes a document d and clas-
sifies whether it is about movies or travel. We will extract features using the following
code:

cities = set([’Paris’,’London’,’Rome’,’Berlin’,’Madrid’])
people = set([’Michael’,’John’,’Ellen’,’Rachel’])

def getFeatures(document):
features = {}

for word in document[’tokens’]:
key = "CountForWord-" + word
features[key] = features.get(key,0) + 1

for word in document[’tokens’]:
key = "CountForLowercasedWord-" + word.lower()
features[key] = features.get(key,0) + 1

for word in document[’tokens’]:
if word in cities:

key = "CountOfCityWords"
features[key] = features.get(key,0) + 1

for word in document[’tokens’]:
if word in people:

key = "CountOfPersonWords"
features[key] = features.get(key,0) + 1

return features

The above code can be thought of as four feature templates. The first adds a feature for
every word in the document. The second adds a feature for the lowercased form of every
word in the document. They are called “templates” because a single template produces
many different features. The last two templates are simpler: they count the number of city
words and person words mentioned in the document (in practice you would use much
longer wordlists of cities and people).

Question 1.8. [3 points] Suppose that each document d has m tokens. (A) At most, how
many nonzero elements are there in the feature vector output by getFeatures(d)? (B)
Suppose that the training set has vocabulary size V (counting different cased words as
separate words) and that we write the feature vector as an actual vector, rather than a
dictionary that only includes nonzero entries. How long would the vector be?

4

2 Left-to-Right Pairwise Coreference

Here you will implement an antecedent selection system, similar to what was described
in lecture. The algorithm loops through mentions in the document. For the nth mention,
it makes an antecedent decision. There are n possible outcomes (n-way classification):
either one of the n − 1 previous mentions, or else it decides to not attach to anything
mentioned previously.

Note that there is potentially more than one correct answer — a correct answer is, any
of the previous mentions within the same entity cluster. If the mention is the first mention
in the entity cluster, the correct answer is the null decision of not having an antecedent.

We’ll first do a rule-based version and then a machine learning version.

3 Evaluating Coref Performance

There are a number of ways to evaluate the performance of a coreference system. The
provided code computes ‘pairwise’ precision and recall, which doesn’t look just at an-
tecedent decisions, but instead looks at all pairs of mentions in the same cluster. You’ll
see there’s only 1 gold-standard link in small.json (the he-him link). There’s 55,753 gold
links in the test set.

At times, we will want to compare the precision v.s. recall of a given approach.
At other times, however, we’ll want a single number to summarize performance. The
code computes the ‘F1’ measure (http://en.wikipedia.org/wiki/F1_score) and
prints this alongside precision and recall. Use this when assessing the overall impact of
adding new features, etc.

4 Code

We have provided a substantial amount of helper code in both coref.py and corefutil.py.
Everything you will submit will be in modifications to coref.py. Do not modify corefu-
til.py.

At the bottom of corefutil.py, we provide helper functions that may be useful when de-
signing features and when debugging. To understand the document and mention datas-
tructures, see how they are created in convertJsonDocIntoMyDoc, or see how they are
used in coref.py. We also provided a script, mentiontest.py, which does not do any coref-
erence, but instead just loops through the data structures and prints them out. This might
help make it clear what these data structures look like. You can modify it to help debug
your mention analysis functions. Do not submit your mentiontest.py.

coref.py is split into 4 parts. The first 3 are for code that you will complete in Sections 5,
6, and 7 below. The final part of coref.py provides a main function and driver code for
running different kinds of coreference. Each of these will train a model (if necessary),

5

http://en.wikipedia.org/wiki/F1_score

perform coreference on the test set, and print an F1 score. We provide a commandline
interface. Here are some examples of how to use it:

Test the rule-based coref system on a small example file (for debugging)
python coref.py rule --test-file small.json

Test the rule-based coref system
python coref.py rule --test-file corefdata/test.jsons

Train and test the ml-based coref system
python coref.py ml --train-file corefdata/train.jsons --test-file corefdata/test.jsons

Finally, note that the main function defines a ‘verbose’ flag at the top level. Toggle
this to print out lots of output. This is useful for debugging, error analysis, and feature
engineering. You should always test things first on a very small example like small.json.
Look at the file to see what’s in it: it’s just two sentences, and there’s only one non-
singleton entity. small.html contains an HTML version of this document, produced by
view.py.

5 Mentions

We are using a dataset of coref-annotated documents from the CoNLL-2012 competition
(http://conll.cemantix.org/2012/). This data defines mentions as phrases (to-
ken spans), and for each mention has an entity ID. It also contains POS tags, NER tags,
and parses. We’ll only use the POS tags to keep things simple.

Download the full dataset from the zip file posted on the Piazza Resources page at
https://piazza.com/umass/fall2014/cmpsci585/resources. (Part of it comes
from a copyrighted dataset that I’m guessing we are not allowed to post publicly.) train.json
contains training data, one document per line. test.json contains test data.

I ran the first 5 documents through view.py to create an HTML version viewable here:
http://people.cs.umass.edu/˜brenocon/inlp2014/ps/ps4/test_first_5.
html

5.1 Looking at the data

Question 5.1. [4 points] A good thing to do with a new dataset is read it a little bit.
In test first 5.html, go to the document wsj 1504 and read the first several sentences

of the Bob Stone story (and learn how you improve your own corporation’s governance
procedures). Explain in English what the distinction you think the annotators were mak-
ing when they said e12 and e22 are different entities. (e22 first appears in sentence S2.)
Do you agree or disagree, and why?

6

http://conll.cemantix.org/2012/
https://piazza.com/umass/fall2014/cmpsci585/resources
http://people.cs.umass.edu/~brenocon/inlp2014/ps/ps4/test_first_5.html
http://people.cs.umass.edu/~brenocon/inlp2014/ps/ps4/test_first_5.html

5.2 Implementation

The following code should be completed in coref.py.

Question 5.2. [8 points] Implement the isPronoun(m), isProper(m), and isPlural(m) men-
tion attribute functions. A good way to do this is to use POS tags that came from a POS
tagger. (Actually the tags in this data might be gold-standard, so that’s perhaps overly
optimistic.) Implementing these will require using the headTokenPOSTag() function in
corefutil.py.

Note that the POS tags are in the Penn Treebank format. Find the PTB tagset docu-
mentation online (same as for when you did the POS exercise several weeks ago). You’ll
see which tags correspond to pronouns, proper nouns, and plural nouns. You might also
have to hard-code some very small pronoun wordlists for plural pronouns (because the
PTB tagset doesn’t distinguish grammatical number for pronouns).

Please write the implementations of these functions within coref.py where they’re
specified. However, for debugging, we suggest you call them from mentiontest.py (see
the comments in there). You can run it on the sample file with:

python mentiontest.py small.json

6 Rule-Based Coreference

In this section, you will implement and test a rule-based system. The algorithm is as
follows:

• Assume a window size K, which means you will look at the last K mentions as
antecedent candidates. For example, K = 5 is the default.

• For each of these candidate mentions, use a filter to accept or reject them.

• Of the accepted candidates, choose the closest one as the antecedent. If none were
accepted, choose a null antecedent.

We’ve implemented this in doRuleCoref. It calls isAcceptableAntecedent for the ac-
cept/reject filter. You only need to implement isAcceptableAntecedent.

6.1 Implementation

The version of isAcceptableAntecedent that we provide always returns False. Therefore,
it refuses to ever link a mention to any candidate. Run it on the test data (or the smaller
example files) and confirm that it should predict 0 links, yielding 100% precision but 0
recall. You should get the following results out of the box.

7

% python coref.py rule --test-file small.json
Pairwise Prec = 1.000 (0/0), Rec = 0.000 (0/1), F1 = 0.000

% python coref.py rule --test-file corefdata/test.jsons
Pairwise Prec = 1.000 (0/0), Rec = 0.000 (0/55753), F1 = 0.000

Question 6.1. [2 points] doRuleCoref has a verbose mode. Turn it on and run on small.json
or bobstone.json to see what it does.

Verbose mode is not fully implemented yet. Please implement it so that for every
antecedent candidate, it prints diagnostic information about whether the system thinks
the proposed link is acceptable or not. Fill in the skeleton code for this. So for “[Harry
Potter] was a [wizard]. [Voldemort] said hi to [him]”, when processing [him], it might
print something like the following. We suggest using indentation like this to make it
easier to read.

...
Processing mention: [him]

Candidate = [Harry Potter]
gold link = YES, is acceptable? NO

Candidate = [wizard]
gold link = YES, is acceptable? NO

Candidate = [Voldemort]
gold link = NO, is acceptable? YES

Question 6.2. [1 points] In the above example, will the rule system correctly choose an
antecedent for “[him]”?

Now play around with some different ways to implement isAcceptableAntecedent.
For example, you could choose to: only resolve pronoun mentions; or only resolve pro-
nouns to a candidate that is a non-pronoun; etc. For at least one of your versions, enforce
some sort of grammatical agrement constraint: for example, only link mentions if their
number (isPlural) attribute agrees.

Question 6.3. [8 points] Describe 3 different choices of rules you used for isAcceptableAn-
tecedent and provide the precision and recall for each, when you run on the entire test set
(corefdata/test.json). In coref.py, provide your best performing implementation. (Either
choose the one with the highest F-score, or if you think that’s not a good way to evaluate,
explain your reasoning why the one you picked is best.)

Question 6.4. [2 points] The version of rule-based coreference that we used is quite restric-
tive. It always takes the first mention that satisfies isAcceptableAntecedent(Mcur,Mcand).
Describe in words a different rule-based approach that you think would perform better.

7 Machine Learning-Based Coreference

We will use an ML approach similar to the one in class, though with a slight tweak. At
prediction time, each antecedent candidate, a link from Mcur to Mcand as its antecedent,

8

is scored with a linear scoring function. So for “[Harry Potter] was a [wizard]. [Volde-
mort] said hi to [him]”, when resolving “[him]”, there are 3 candidates. There is a scoring
threshold t. If the scores of all candidates are below t, then the resolution is null. For ex-
ample, in this case, “[him]” would be considered to be starting a new entity. Otherwise,
the antecedent is chosen to be the highest scoring candidate.

(On Wednesday lecture I presented it slightly differently, with “null” being a candidate
by itself. This might be a better way to do it actually, but it makes feature extraction
slightly more complicated.)

If you run coref.py in ‘ml’ mode, it extracts features and calls the trainPerceptron func-
tion in perc.py, then runs new coreference predictions on the test set as explained above.

Question 7.1. [1 points] Changing the threshold t affects the precision-recall tradeoff. Ex-
plain how, if you were to increase or decrease t. You can answer without running code,
and instead just thinking about how changing t will affect the outputs.

At training time, we take gold standard data and turn it into binary classification ex-
amples of each link. In the above example, if we had correct gold standard data, [him]
that will generate 2 positive examples and 1 negative example, corresponding to the 3
candidate antecendents to its left.

7.1 Features

Every potential coreference link between Mcur and Mcand is associated with a feature vec-
tor, which we denote by the output of the function g = f(Mcur,Mcand). The scoring for-
mula (for the linky-ness of the pair) for candidate Mcand is: θTf(Mcur,Mcand)

We suggest developing features by concatenating various string representations for
various mentions attributes. For example, for each mention, we can define a string for
the output of isPronoun() on the mention, then we could define a feature for the pair by
concatenating them. Say m1 is the current mention, and m2 is the candidate. We’d do:

key ="Pronoun:%s-%s" % (isPronoun(m1),isPronoun(m2))
features[key] = 1

This is one template, and it would yield 4 different features: “Pronoun:False-False” (mean-
ing that neither the current nor candidate mentions are pronouns), “Pronoun:True-False”
(meaning the current mention is pronoun, but the candidate is not), etc. For a given ex-
ample, only one of these will have a nonzero value.

Note that it is very important to associate each feature template with a unique string
identifier. Above, we use the prefix ‘Pronoun:’ Imagine we also used the template

key ="Plural:%s-%s" % (isPlural(m1),isPlural(m2))
features[key] = 1

If we didn’t include the “Pronoun:” and “Plural:” strings, then these templates could
return the same string representation, and thus overwrite each other.

9

We are providing only two features: the bias feature, and a binary feature whether
the headwords match. This feature by itself isn’t strong enough to do much. We suggest
building features using the following concepts.

1. Mention attributes, like the plural/number/pronoun attributes you implemented
already. It is also useful to make versions that conjoin them against the text of the
head token for the other mention (using the headToken() function).

2. The string for the head token (using the headtoken() function in corefutil).

3. The POS tag for the head token (using the headTokenPOSTag() function).

4. Distance features: are the mentions in the same sentence? How many tokens are
between them? (Use the sentenceIndexInDocument() and mentionPositionInDocu-
ment() functions).

You can use features from either the current or candidate mention, and you can conjoin
features from both as well. Conjoining is important because it gets at agreement and other
relationships between the mentions. Note that you can do both conjunction and individ-
ual versions. For example, if the candidate POS is NNP and the current mention POS
is PRP, you can make three different features with value 1, like “CandidatePosIsNNP”,
“CurrentPosIsPRP”, and “CandidatePosIsNNP and CurrentPosIsPRP” (and the names
don’t have to be cute, just have to be distinguishable). So that would be three different
feature templates right there. There are tons of feature templates like this in coref and also
dependency parsing papers.

You can also of course do additional conjunctions between different types of features.
For example, the “head words are the same” feature that we gave you doesn’t do much
by itself. But if you’re smart about how to conjoin it with other information, it’s very
powerful. (If you just print all the head word pairs, this might make apparent what the
trick is — under what conditions does a string match imply coreference?)

7.2 Implementation

The following code should be completed in coref.py.

Question 7.2. [4 points] When using getTrainingExamples in verbose mode, it should
print out some information about each training example, as described in comments in the
code. Complete this. This will be helpful for developing and debugging features.

Question 7.3. [12 points] Implement getFeaturesForMentionPair(m1, m2). You must in-
clude at least 5 new feature templates, drawn from the above. (You don’t have to im-
plement from all four bullet points, since each one describes potentially several different
templates you could make from it.)

Question 7.4. [1 points] In your text writeup, paste two feature vectors from the previous
question. One for a positive-labeled training example and one from a negative one.

10

Question 7.5. [2 points] Describe in words what the 5 feature templates are that you im-
plemented.

7.3 Engineering New Features

Question 7.6. [8 points] In addition to the 5 templates above, develop 2 new feature tem-
plates that you think should improve performance. They could be drawn from the above,
or the suggested addition below, or anything else you want. For each, do the following:

• Create two examples, each consisting of one or two sentences, where coreference
with the base set of features might make the wrong decision. You can make up the
examples. They do not have to be from the training corpus. You do not need to run
the code on these examples. Put them in your text writeup.

• Write a brief description of the template and why you think it will fix the particular
errors you identified in the previous step.

Suggested addition: Gender attributes for pronouns (this can help a lot). PTB POS
tags don’t have this information; you have to write small word lists yourself. If you only
have it for pronouns, that’s good but it only helps with pronoun-pronoun matches. For
names, you can find first name gender lists online from the U.S. Census or other sources.
Common nouns are a lot harder/complex so don’t worry about them. (if you want to,
you can try this list: http://www.clsp.jhu.edu/˜sbergsma/Gender/)

Question 7.7. [5 points] An important type of test (related to an “ablation test”), is to
assess the effect of individual feature templates. Choose a base set of feature templates
to use and compute the test set accuracy for using just these features. Then report the
results from three other experiments: base plus one new template, and base plus two
new templates, and then the whole new system (base + two new templates). (The easy
way to do this code-wise is to toggle them with commenting/uncommenting. If you want
to be fancy, you can add commandline flags for them.)

You will receive full credit even if the templates didn’t actually improve F1. However,
they need to be well-motivated by examples in the previous question. Provide a table
with the following format:

Templates Used Precision Recall F1
Base

Base + template 1
Base + template 2

Base + both templates

11

http://www.clsp.jhu.edu/~sbergsma/Gender/

7.4 Trading Off Precision and Recall

Question 7.8. [2 points] Explain in words what precision and recall are.

Question 7.9. [2 points] Explain a context where you might prefer high-precision corefer-
ence decisions. When would you prefer high-recall coreference?

(Hint: think about different NLP applications like web search, machine translation,
dialogue understanding, etc.)

Question 7.10. [7 points] In the top level main function, we have:

testSettings[’thresh’] = 0

As discussed in Question 7.1, changing the threshold will impact the precision-recall
tradeoff. Vary the threshold with a for loop and record the (precision,recall) values for
each threshold. Plot a precision vs recall for at least 6 different values of the threshold.
(Just use the points by themselves; there’s no need to make an actual curve.) Include the
graph in your text writeup. Say which setting of features you used for this experiment.

12

	Part 1: Perceptron Classifier
	Features

	Left-to-Right Pairwise Coreference
	Evaluating Coref Performance
	Code
	Mentions
	Looking at the data
	Implementation

	Rule-Based Coreference
	Implementation

	Machine Learning-Based Coreference
	Features
	Implementation
	Engineering New Features
	Trading Off Precision and Recall

