CS 585 Problem Set 3, Part 1

October 22, 2014

Name:

Collaborators
(See course policy here)
Please submit a paper copy of this at the start of lecture on Tuesday Nov 4.
These questions have 30 total points.

Intro: Structured Perceptron

Recall that the perceptron learning algorithm updates a parameter vector 6 by iterating
through training examples. For an example (z;,y;), you take two steps. First, predict a
structure by computing the highest-scoring structure y* = argmax, " f(z;,y) (the “de-
coding” prediction problem). Second, update the parameter vector:

g(new) — e(old) + ng (1)

Here, 7 is a fixed step size (e.g., 0.01). The vector g is the difference between the gold
feature vector versus the predicted feature vector:

g = f(mi, yi) — f(a, y*)

We're using the letter “¢” for this because it’s a gradient of a particular objective function,
though for this problem we can just think of it as an “update vector.”

There are many possible options for the feature function f(x,y). A first-order sequence
model perceptron uses feature functions for local transitions (between neighboring tags)
and observation features (for individual tags), which means the Viterbi algorithm can
be used to decode. But more generally, the structured perceptron can be used any time
you have a model with a decoding algorithm to solve that argmax structure prediction
problem. The questions in this section are general for any structured perceptron.

http://people.cs.umass.edu/~brenocon/inlp2014/grading.html

1 Averaged (Structured) Perceptron

Both in theory and in practice, the predictive accuracy of a model trained by the struc-
tured perceptron will be better if we use the average value of § over the course of training,
rather than the final value of §. This is because § wanders around and doesn’t converge
well, because it overfits to whatever data it saw most recently.

After seeing ¢ training examples, define the averaged parameter vector:

_ 1
br="1 D b 2

where 6, is the parameter value of the perceptron algorithm after ¢ updates. For training,
you still run the perceptron algorithm in the normal way using the current 6, but you save
some information so once you’re done training, you can calculate §, which you want to
make new predictions on new data.

In this section we’ll derive an efficient algorithm to implement the averaged percep-
tron. First, assume that always 7 = 1. Define g, to be the update vector g as described in
update (1) at iteration ¢. With this, we write the perceptron update as

0r = 01+ ngt.
Thus in this notation, the averaged perceptron looks something like:

e Initializet =1,0, =0
e For each example i (iterating multiple times through dataset),

Predict y* = argmax, 0" f(x;, y)
Update 6; := 6,1 + ng:

(store something for later)
t:i=t+1

e Calculate based on stuff you stored during training

Now, we define an auxiliary vector S that we also update at every iteration using
Sp = Si—1+ (t = 1)ng. ©)
Our proposed algorithm computes 6; as

= 1
Qt == et - ;St (4)

Question 1.1. [2 points] What is the advantage of computing §; using (4) rather than a
more naive approach that manually averages all 6, as in (2)?

Question 1.2. [2 points] Using (2), for t = 1,2, 3, what is 6, in terms of g, g2, g3?

2

Question 1.3. [2 points] Using (3), for ¢t = 1,2, 3, what is S; in terms of ¢1, g2, g5?

Question 1.4. [4 points] Using (4), show that the value computed by the proposed algo-
rithm is correct for 6, and 65.

Question 1.5. [12 points] The previous step proved the correctness of (4) for a base case.
Now, prove the overall correctness of (4) using induction. Namely, assume that (4) pro-
duces the correct value at step (¢ — 1) and prove that it the combination of (3) and (4)
produces the right value at step t.

HINT: We recommend beginning your proof with the following three lines.

- 1
Or=" D O (5)
t'=1..t
1 1
= o]+ 70 (6)
t'=1..(t—1)
t—1. 1
- i+ 7
O+ 0 7)

2 Sparse Features

A common sitatuation in NLP is to have very sparse feature vectors. Namely, that the
number of nonzero elements of each g is small relative to its length. Assume that g is of
length J, but that it never has more than L << J nonzero elements.

Question 2.1. [2 points] In terms of J and L, what is the time complexity per step of the
perceptron update (Eq. (1)) for a naive implementation that does not exploit the sparsity
structure of g? Thatis, an implementation that loops over all feature types, including ones
that might potentially have zero values in g.

Question 2.2. [2 points] What is a smart way to implement Eq. (1) such that the time
complexity of each update is much less than J?

Question 2.3. [2 points] After T steps of the perceptron algorithm, what is the most num-
ber of nonzero elements that 6, can have in terms of J and L?

Question 2.4. [2 points] Why do sparse features often occur in NLP applications?

	Averaged (Structured) Perceptron
	Sparse Features

