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• Project scheduling

• Labeling
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• What to do when we only have a little bit of 
labeled data?  (Like in the final project!)

• Get more labels

• Different forms of supervision

• Tag dictionaries: type-level supervision

• More sophisticated features

• Exploit unlabeled data

• Semi-supervised learning

• Active learning:
intelligently choose which unlabeled data to annotate
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Unlabeled data

• Labeled data: human element is costly

• PTB or ImageNet: the largest labeled datasets and 
very successful -- but very expensive!

• PTB = 1M tokens

• ImageNet = 1M images

• Small efforts and new problems: typically thousands 
of tokens

• But we have huge quantities of unlabeled, raw 
text.  Can we use them somehow?
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45k tokens
(our NER dataset)
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45k tokens
(our NER dataset)

1M tokens
(WSJ PTB)
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45k tokens
(our NER dataset)

1M tokens
(WSJ PTB)

1B tokens
(Gigaword: decades of news articles)

Twitter, web:
trillions of tokens ....

[246 more rows...]
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Semi-supervised learning 

• Formally:  given

• (1) small labeled dataset of (x,y) pairs,

• (2) large unlabeled dataset of (x, _) pairs,

• ... learn a better f(x)->y function than from just 
labeled data alone.

• Two major approaches

• 1. Learn an unsupervised model on the x’s.  Use its 
clusters/vectors as features for labeled training.

• 2. Learn a single model on both labeled and 
unlabeled data together

6

Wednesday, November 19, 14



Unsupervised NLP

• Can we learn lexical or grammatical structures 
from unlabeled text?

• Maybe lexical/structural information is a latent 
variable ... like alignments in IBM Model 1

• (Different use: exploratory data analysis)

• Intuition for lexical semantics: the distributional 
hypothesis.

• You shall know a word by the company it keeps
(Firth, J. R. 1957:11)

• Very useful technique: learn word clusters (or other 
word representations) on unlabeled data, then use as 
features in a supervised system.
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Distributional example:
What types of words can go into these positions?
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the ___
that ___
of ___
by ___

red ___
green ___

happy ___
angry ___
sad ___

he __
she __
Mary __
John __

Distributional semantics is 
based on the idea that:
Words with similar 
context statistics have 
similar meaning.

Assemble sets of words 
with similar context 
frequencies.

Many ways to capture 
this... including HMMs.

__ lol
__ haha

__ it
__ him
__ her
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Brown HMM word clustering

• HMM for the unlabeled dataset

• With a one-class-per-word restriction!

• (Remember: real-world POS data kinda has this property)

• Thus each HMM class is described by a hard clustering of 
words (a set of words)

• Heuristically search for word clusters that maximize 
likelihood

9

Notation:
c is a clustering of wordtypes. c(w) is w’s cluster ID.

c⇤ = argmax

c2C

Y

i

pMLE(c(wi) | c(wi�1))⇥ pMLE(wi | c(wi))
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Hierarchical clustering

• One form of Brown clustering is also 
hierarchical, through agglomerative clustering: 
iteratively merge clusters, and track the merge 
history

• Initialize: Greedily assign words to K clusters 

• Iterate: Merge the two clusters that causes the 
least-worst hit to likelihood

• (There are many other approaches to this type of HMM;
see http://statmt.blogspot.com/2014/07/understanding-mkcls.html)

10

Wednesday, November 19, 14

http://statmt.blogspot.com/2014/07/understanding-mkcls.html
http://statmt.blogspot.com/2014/07/understanding-mkcls.html


Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

[Slide credit: Terry Koo]
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Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

00  01  10  11

[Slide credit: Terry Koo]
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Hier. clusters as POS features
• 1000 leaves, cluster prefixes as features for Twitter POS

Using the Liang 2005 version of Brown clustering:
https://github.com/percyliang/brown-cluster

We approach part-of-speech tagging for 

informal, online conversational text

using large-scale unsupervised word 
clustering and new lexical features. Our 
system achieves state-of-the-art tagging 
results on both Twitter and IRC data. 
Additionally, we contribute the first POS 
annotation guidelines for such text and 
release a new dataset of English language 
tweets annotated using these guidelines.

Improved PartImproved Part--ofof--Speech Tagging for Online Conversational Text with Word ClustersSpeech Tagging for Online Conversational Text with Word Clusters

Word Clusters

Tagger Features
 Hierarchical word clusters via Brown clustering 
(Brown et al., 1992) on a sample of 56M tweets
 Surrounding words/clusters
 Current and previous tags
 Tag dict. constructed from WSJ, Brown corpora
 Tag dict. entries projected to Metaphone
encodings
 Name lists from Freebase, Moby Words, Names 
Corpus
 Emoticon, hashtag, @mention, URL patterns

Olutobi Owoputi* Brendan O’Connor* Chris Dyer* Kevin Gimpel+ Nathan Schneider* Noah A. Smith*

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
+Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Highest Weighted Clusters

Speed
Tagger: 800 tweets/s (compared to 20 tweets/s previously)
Tokenizer: 3,500 tweets/s

Software & Data Release
 Improved emoticon detector and tweet tokenizer
 Newly annotated evaluation set, fixes to previous annotations

Examples

RVVVOPNDVP

NowHateingStartCuldYallSoCroudDaShakeBoutta

Results
Our tagger achieves state-of-the-art results in POS tagging 
for each dataset:

O

he
V

can
V

add
O

u
P

on
^

fb lolololsonamelastyofiraskedhesmhikr
!PNADPVOG!

or n & and103&100110*

you yall u it mine everything nothing something anyone 

someone everyone nobody

899O11101*

do did kno know care mean hurts hurt say realize believe 

worry understand forget agree remember love miss hate 

think thought knew hope wish guess bet have

29267V01*

the da my your ur our their his378D1101*

young sexy hot slow dark low interesting easy important 

safe perfect special different random short quick bad crazy 

serious stupid weird lucky sad

6510A111110*

x <3 :d :p :) :o :/2798E1110101100*

i'm im you're we're he's there's its it's428L11000*

lol lmao haha yes yea oh omg aww ah btw wow thanks 

sorry congrats welcome yay ha hey goodnight hi dear 

please huh wtf exactly idk bless whatever well ok

8160! 11101010*

Most common word in each cluster with prefixTypesTagCluster prefix

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus 

(incl. system messages)

Tagset

Datasets

Tagger, tokenizer, and data all released at:

www.ark.cs.cmu.edu/TweetNLP

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus 

(incl. system messages)

Accuracy on RITTERTW corpus

Dev set accuracy using only clusters as featuresAccuracy on NPSCHATTEST corpus 

(incl. system messages)

Model
Discriminative sequence model (MEMM) 
with L1/L2 regularization

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
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Other examples
• Dependency parsing

(Koo et al. 2008)
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Effect of Training Corpus Size
Training 

Sentences
Baseline Cluster-based

1000 82.0 85.3 (+3.3)

2000 85.0 87.5 (+2.5)

4000 87.9 89.7 (+1.8)

8000 89.7 91.4 (+1.7)

16000 91.1 92.2 (+1.1)

32000 92.1 93.2 (+1.1)

39832 92.4 93.3 (+0.9)

• The POS tagger uses the same training 
corpus as the parser

• NER (Miller et al. 2004)Miller et al, NAACL 2004

Third, we consider the impact of active learning.  Figure

3 shows (a) discriminative tagger performance without

cluster features, (b) the same tagger using active

learning, (c) the discriminative tagger with cluster

features, and (d) the discriminative tagger with cluster

features using active learning.  Both with and without

clusters, active learning exhibits a noticeable increase in

learning rates.  However, the increase in learning rate is

significantly more pronounced when cluster features are

introduced.  We attribute this increase to better

confidence measures provided by word clusters – the

system is no longer restricted  to whether or not it

knows a word; it now can know something about the

clusters to which a word belongs, even if it does not

know the word.

Finally, Figure 4 shows the impact of consolidating the

gains from both cluster features and active learning

compared to the baseline HMM.  This final combination

achieves an F-score of 90 with less than 20,000 words of

training – a quantity that can be annotated in about 4

person hours – compared to 150,000 words for the

HMM – a quantity requiring nearly 4 person days to

annotate.  At 1,000,000 word of training, the final

combination continues to exhibit a 25% reduction in

error over the baseline system (because of limitations in

the experimental framework discussed earlier, active

learning can provide no additional gain at this

operating point).

6 Discussion

The work presented here extends a substantial body of

previous work (Blum and Mitchell, 1998; Riloff and

Jones, 1999; Lin et al., 2003; Boschee et al, 2002;

Collins and Singer, 1999; Yarowsky, 1995) that all

focuses on reducing annotation requirements through a

combination of (a) seed examples, (b) large un-

annotated corpora, and (c) training example selection.

Moreover, our work is based largely on existing

techniques for word clustering (Brown et al., 1990),

discriminative training (Collins 2002), and active

learning.  

The synthesis of these techniques, nevertheless, proved

highly effective in achieving our primary objective of

reducing the need for annotated data.

Much work remains to be done.  In an effort to move

rapidly toward our primary objective, we investigated

only one type of discriminative training (averaged

perceptron), only one type of clustering (bigram mutual

information), and only one simple confidence measure

for active learning.  It seems likely that some additional

gains could be realized by alternative discriminative

methods (e.g. conditional random fields estimated with

conjugate-gradient training).  Similarly, alternative

clustering techniques, perhaps based on different

contextual features or different distance measures,
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This is a learning curve analysis: 
performance as a function of training set size
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Brown clusters as features

• Have been seen useful for

• POS

• NER

• Dependency parsing

• (others?)

16

• More generally: use automatically learned
word representations.  Next week: vector-valued reprs.

• I think word reprs are the most established use of 
unlabeled data for NLP systems
See also: http://metaoptimize.com/projects/wordreprs/
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Semi-supervised learning 

• Formally:  given

• (1) small labeled dataset of (x,y) pairs,

• (2) large unlabeled dataset of (x, _) pairs,

• ... learn a better f(x)->y function than from just 
labeled data alone.

• Two major approaches

• 1. Learn an unsupervised model on the x’s.  Use its 
clusters/vectors as features for labeled training.

• 2. Learn a single model on both labeled 
and unlabeled data together
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EM for semi-sup learning

• we have

• (1) small labeled dataset of (x,y) pairs,

• (2) large unlabeled dataset of (x, _) pairs,

• Treat missing labels as latent variables.  Learn with EM!

• Init: train model on labeled data

• E-step: soft predictions on unlabeled

• M-step: maximize labeled loglik, PLUS weighted loglik 
according to our new soft predictions.  So the entire 
unlabeled dataset is part of the training set

18

• Issues:

• Have to re-weight the M-step (what if unlabeled data is 1 million times bigger?)

• Can go off the rails
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Self-training

• Same setup, but only add in a small number of 
highly-confident examples

• Label all unlabeled x’s.  Choose the top-10 most 
confident (and/or higher than 99% confidence...).

• Add those 10 to the labeled dataset

• Re-train and iterate

• Many examples of this being useful -- may have 
to limit the number of iterations and/or play 
with thresholds

• E.g. best parsers use self-training
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Active learning
• You want to label more data.  Use your current classifier to help 

choose the most useful examples to annotate.

• Uncertainty sampling: Choose the example where the model is 
most uncertain.  (If binary: closest to 50% predicted prob.  If 
multiclass: highest entropy)
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2.3. MEASURES OF UNCERTAINTY 13
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Figure 2.2: Uncertainty sampling with a toy data set. (a) 400 instances, evenly sampled from two class
Gaussians. Instances are represented as points in a 2D input space. (b) A logistic regression model trained
with 30 labeled instances randomly drawn from the problem domain. The line represents the decision
boundary of the classifier. (c) A logistic regression model trained with 30 actively queried instances using
uncertainty sampling.

1: U = a pool of unlabeled instances {x(u)}Uu=1
2: L = set of initial labeled instances {〈x, y〉(l)}Ll=1
3: for t = 1, 2, . . . do
4: θ = train(L)

5: select x∗ ∈ U , the most uncertain instance according to model θ

6: query the oracle to obtain label y∗

7: add 〈x∗, y∗〉 to L
8: remove x∗ from U
9: end for

Figure 2.3: Generic pool-based uncertainty sampling algorithm.

2.3 MEASURES OF UNCERTAINTY

A general active learning algorithm is presented in Figure 2.3. The key component of the algorithm
with respect to designing an active learning system is line 5, and we need a way to measure the
uncertainty of candidate queries in the pool. For binary classification, the “closest to the decision
boundary (probability ≈ 0.5)” heuristic will suffice. But when we deal with problems and models
that have posterior distributions over three or more labels — or even multiple output structures —
we need a more general measure of uncertainty or information content. From this point on, let x∗

A

denote the best instance that the utility measure A would select for querying.

• My take: some people in industry swear by AL, but I haven’t seen 
many research papers showing dramatic gains from it.  Not sure 
why the difference.  See review by http://burrsettles.com/ 
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