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Andrew McCallum, UMass Amherst

she! eats! fish! with! chop-
! ! ! ! sticks

0! 1! 2! 3! 4! 5
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   S → NP VP
 NP → NP PP
 VP → V NP
 VP → VP PP
 PP → P NPNP

 NP → she
 NP → fish
 NP → fork
 NP → chopsticks
 V → eats
 V → fish
 P → with

CMPSCI 585 In-class Exercise 10/28 (actually 10/30)   Name: _______________________________________________

Fill in the CYK dynamic programming table to parse the sentence below.  In the bottom right corner, draw the two parse trees.
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Andrew McCallum, UMass Amherst

• (Solution slide removed for web; see the piazza 
resources page)
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• OK, we can track ambiguities.  But how to 
resolve them?

• Need to prefer certain trees/derivations to 
others.
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Another example

S

VP

NP

N

rates

N

interest

V

raises

NP

N

Fed

I A minimal grammar permits 36 parses!

I Broad-coverage grammars permit millions of parses of
moderate-size sentences.

[Slide: Jacob Eisenstein]
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PCFGs

S ! NP VP 0.9
S ! S CC S 0.1

NP ! N 0.2
NP ! DT N 0.3
NP ! N NP 0.2
NP ! JJ NP 0.2
NP ! NP PP 0.1

VP ! V 0.4
VP ! V NP 0.3
VP ! V NP NP 0.1
VP ! VP PP 0.2

PP ! P NP 1.0

PCFGs

• P(words, tree) = 
product of all 
expansion probs

• For each 
nonterminal, possible 
expansions sum to 1

Thursday, November 6, 14



P (tree,words) = product of all expansion probs

P (tree | words) = 1

Z
P (tree,words)
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Major Research Questions

What’s the right representation?

What’s the right model?

(We’ve talked about one representation

and one model.)

• How to learn to parse empirically?

• How to make parsers fast?

• How to incorporate structure downstream?

[Slides: Noah Smith]
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http://www.cs.cmu.edu/~nasmith/LS2/
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Decoding Algorithms

• Suppose I have a PCFG and a sentence.

• What might I want to do?

– Find the most likely tree (if it exists).

– Find the k most likely trees.

– Gather statistics on the distribution over trees.

• Should remind you of FS models!

[Slides: Noah Smith]
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Probabilistic CKY

Input:  PCFG G = (Σ, N, S, R) in CNF and

sequence w ∈ Σ*

Output:  most likely tree for w, if it exists, and its

probability.

! 

C X,i,i( ) = p X " wi( ),null

C X,i,k( ) =

max
Y ,Z #N, j# i+1,k$2[ ]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z),

&argmax
Y ,Z #N, j# i+1,k$2[ ]

C(Y,i, j) %C(Z, j +1,k) % p(X "Y,Z)

goal = C S,1,w( )
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[Slides: Noah Smith]
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Resist This Temptation!

• CKY is not “building a tree” bottom-up.

• It is scoring partial hypotheses bottom-up.

• You can assume nothing about the tree until

you get to the end!

[Slides: Noah Smith]
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HMM and PCFGs

• PCFGs are a generalization of HMMs

12

Sequence Tree

Decoding Viterbi CKY

Decoding
Complexity

linear
in sent. length

cubic
in sent. length
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Learning from Data

1. Where do the rules come from?

2. Where do the rule probabilities come from?

First answer:  Look at a huge collection of trees
(a treebank).

X → α is in the grammar iff it’s in the treebank.

p(α | X) is proportional to the count of X → α.

[Slides: Noah Smith]
Thursday, November 6, 14
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Penn Treebank  (Marcus et al. 1993)

• A million tokens of parsed sentences from the 
Wall Street Journal

• There’s also parses of the Brown corpus -- fiction, 
essays, etc. -- but researchers usually ignore it

• Parsed by experts (trained annotators), with 
consensus process for disagreement

• The structure looks like what you’d expect from 
a PCFG.

• Traces ... usually ignored by most parsers

• Tends to be “flat” where there’s controversy

14
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Example Tree

( (S

    (NP-SBJ

      (NP (NNP Pierre) (NNP Vinken) )

      (, ,)

      (ADJP

        (NP (CD 61) (NNS years) )

        (JJ old) )

      (, ,) )

    (VP (MD will)

      (VP (VB join)

        (NP (DT the) (NN board) )

        (PP-CLR (IN as)

          (NP (DT a) (JJ nonexecutive) (NN director) ))

        (NP-TMP (NNP Nov.) (CD 29) )))

    (. .) ))

[Slides: Noah Smith]
Thursday, November 6, 14
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( (S

    (NP-SBJ-1

      (NP (NNP Rudolph) (NNP Agnew) )

      (, ,)

      (UCP

        (ADJP

          (NP (CD 55) (NNS years) )

          (JJ old) )

        (CC and)

        (NP

          (NP (JJ former) (NN chairman) )

          (PP (IN of)

            (NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC) ))))

      (, ,) )

    (VP (VBD was)

      (VP (VBN named)

        (S

          (NP-SBJ (-NONE- *-1) )

          (NP-PRD

            (NP (DT a) (JJ nonexecutive) (NN director) )

            (PP (IN of)

              (NP (DT this) (JJ British) (JJ industrial) (NN conglomerate)

))

))))

    (. .) ))

[Slides: Noah Smith]
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Evaluating Parsers

• Take a sentence from the test set.

• Use your parser to propose a hypothesis

parse.

• Treebank gives you the correct parse.

• How to compare?

– {unlabeled, labeled} × {precision, recall}

– crossing brackets statistics

– evalb (http://nlp.cs.nyu.edu/evalb)

• Significance testing …

[Slides: Noah Smith]
Thursday, November 6, 14

http://www.cs.cmu.edu/~nasmith/LS2/
http://www.cs.cmu.edu/~nasmith/LS2/


Issues

• This same dataset has been intensively used 
since 1993 for English parsing research

• Why might this be an issue?

• Treebanks for other languages may require 
different grammatical conventions; quality varies

• It’s pretty easy to find issues in English PTB, 
though quality seems reasonably high

• Issue: domain transfer

18
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Training Parsers In Practice

• Transformations on trees
– Some of these are generally taken to be crucial

– Some are widely debated

– Lately, people have started learning these
transformations

• Smoothing (crucial)

• We will come back to this as we explore some
current state-of-the art parsers.
– Collins (1999; 2003)

– Charniak (2000)

– Klein and Manning (2003)

– McDonald, Pereira, Ribarov, and Hajic (2005)

[Slides: Noah Smith]
Thursday, November 6, 14
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Problems with PCFGs
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Modern statistical parsers

• PCFG assumptions are too strong.
How to improve?

• Transform the training data

• splitting/“annotating” non-terminals

• Automatically learn better splits with EM
(“Berkeley parser”)

• Discriminative whole-tree features -- typically have to use re-
ranking

• Or, shift-reduce parsing: completely alternative approach to 
constituency parsing

• Seems to be fastest with best accuracy, right now at least??

• Zhang’s zpar, or a similar one within the Stanford parser 
software

• Next week: direct dependency parsing

21
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Non-terminal splits

• Annotate a nontemrminal symbol its parent/
grandparent/sibling

• Relaxes PCFG independence assumptions

22
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• Left: still incorrect
Right: split preterminals. “if” prefers to be sentential complement.

23

Non-terminal splits
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• stopped here

24
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Latent-variable PCFG

• Want to automatically learn the splits!

• Latent-variable PCFG:  augment training data with latent states.  
Learn with EM.  Use “split-merge” training to vary number of 
latent states.

• NP_1, NP_2, NP_3....

• [Petrov (2009), still used today in open-source Berkeley parser]

25

NP_z VP_z

PRP_z VBD_z NP_z

DT_z NN_z
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Discriminative re-ranking

• Take top-K trees from a PCFG.

• Re-rank them with log-linear model that can use 
whole-tree features:  e.g. “does this NP contain 
15-20 words”?

• This model is more powerful than a PCFG.

• But by itself, inference is intractable.

• BLIPP parser [Charniak and Johnson 2005]: 
might still be the most accurate English parser

• Re-ranking is a very powerful general technique 
in NLP

26
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How good are parsers now?

• Labeled precision/recall: 90-93% F1 score

• Whole tree accuracy: much less!

• Which ambiguities or errors matter for what 
types of tasks?

27
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