
1

Lecture 15:
Context-Free Grammars
and the CKY algorithm

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor

Includes material borrowed from
Andrew McCallum, Noah Smith,
Dan Klein, Chris Manning,
Jurafsky&Martin
Sunday, November 9, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/

Andrew McCallum, UMass Amherst

she! eats! fish! with! chop-
! ! ! ! sticks

0! 1! 2! 3! 4! 5

0

1

2

3

4

 S → NP VP
 NP → NP PP
 VP → V NP
 VP → VP PP
 PP → P NPNP

 NP → she
 NP → fish
 NP → fork
 NP → chopsticks
 V → eats
 V → fish
 P → with

CMPSCI 585 In-class Exercise 10/28 (actually 10/30) Name: ___

Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.

Sunday, November 9, 14

Two views of syntax

• Constituents: phrase structure

• Dependency structure

3

Sunday, November 9, 14

Parsing: applications

• Language modeling

• John, who eats cookies, {love, loves} …

• Machine translation

• Information extraction

• Grammar checking (MS Word!)

• Question answering

• NL interfaces to databases

• Sentiment analysis

• ...

4

Sunday, November 9, 14

Christopher	
 Manning

	
 Cons/tuency	
 (phrase	
 structure)

• Phrase	
 structure	
 organizes	
 words	
 into	
 nested	
 cons/tuents.

Sunday, November 9, 14

Christopher	
 Manning

	
 Cons/tuency	
 (phrase	
 structure)

• Phrase	
 structure	
 organizes	
 words	
 into	
 nested	
 cons/tuents.
• How	
 do	
 we	
 know	
 what	
 is	
 a	
 cons/tuent?	
 	
 (Not	
 that	
 linguists	
 don’t	

argue	
 about	
 some	
 cases.)
• Distribu/on:	
 a	
 cons/tuent	
 behaves	
 as	
 a	
 unit	
 that	
 can	
 appear	
 in	
 different	

places:
• John	
 talked	
 [to	
 the	
 children]	
 [about	
 drugs].
• John	
 talked	
 [about	
 drugs]	
 [to	
 the	
 children].
• *John	
 talked	
 drugs	
 to	
 the	
 children	
 about

• Subs/tu/on/expansion/pro-­‐forms:
• I	
 sat	
 [on	
 the	
 box/right	
 on	
 top	
 of	
 the	
 box/there].

• Coordina/on,	
 regular	
 internal	
 structure,	
 no	
 intrusion,	
 fragments,	
 seman/cs,	
 …

Sunday, November 9, 14

Ambiguity in parsing

• Syntactic ambiguity is widespread in language.

• Attachment ambiguity

• we ate sushi with chopsticks

• I shot an elephant in my pajamas

• Modifier scope

• southern food store

• etc.

6

Sunday, November 9, 14

Context-Free Grammars

• A generative formalism for constituency
structures and text.

• Generative view: produces a constit. tree and
words in sentence.

• Parsing view: given the words, what parse(s) could
have generated it?

• Both boolean and probabilistic versions

7

Sunday, November 9, 14

8

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Grammar
(Production rules)

Lexicon

Sunday, November 9, 14

9

DR
AF
T

Section 13.1. Parsing as Search 3

S

VP

Verb

Book

NP

Det

that

Nominal

Noun

flight

Figure 13.2 The parse tree for the sentence Book that flight according to grammarL1.

How can we use L1 to assign the parse tree in Fig. 13.2 to this example? The
goal of a parsing search is to find all the trees whose root is the start symbol S and
which cover exactly the words in the input. Regardless of the search algorithm we
choose, there are two kinds of constraints that should help guide the search. One set of
constraints comes from the data, that is, the input sentence itself. Whatever else is true
of the final parse tree, we know that there must be three leaves, and they must be the
words book, that, and flight. The second kind of constraint comes from the grammar.
We know that whatever else is true of the final parse tree, it must have one root, which
must be the start symbol S.

These two constraints, invoked by Bacon at the start of this chapter, give rise to
the two search strategies underlying most parsers: top-down or goal-directed search,
and bottom-up or data-directed search. These constraints are more than just search
strategies. They reflect two important insights in the western philosophical tradition:
the rationalist tradition, which emphasizes the use of prior knowledge, and the em-RATIONALIST

piricist tradition tradition, which emphasizes the data in front of us.EMPIRICIST
TRADITION

13.1.1 Top-Down Parsing
A top-down parser searches for a parse tree by trying to build from the root node STOP-DOWN

down to the leaves. Let’s consider the search space that a top-down parser explores,
assuming for the moment that it builds all possible trees in parallel. The algorithm
starts by assuming the input can be derived by the designated start symbol S. The next
step is to find the tops of all trees which can start with S, by looking for all the grammar
rules with S on the left-hand side. In the grammar in Fig. 13.1, there are three rules that
expand S, so the second ply, or level, of the search space in Fig. 13.3 has three partialPLY

trees.
We next expand the constituents in these three new trees, just as we originally

expanded S. The first tree tells us to expect an NP followed by a VP, the second expects
an Aux followed by an NP and a VP, and the third a VP by itself. To fit the search
space on the page, we have shown in the third ply of Fig. 13.3 only a subset of the trees
that result from the expansion of the left-most leaves of each tree. At each ply of the
search space we use the right-hand sides of the rules to provide new sets of expectations

Sunday, November 9, 14

Context-Free Grammars

• Unlike programming language grammars:
Massive ambiguity!

• Unlike finite state grammars:
Potentially infinite recursion

10

Sunday, November 9, 14

Computation/Statistics in NLP (in this course)

11

Generative
prob. model

Discrim.
~prob. model

C
ho

m
sk

y
H

ie
ra

rc
hy

Independent
Decisions

Markov model:
N-gram LM

Naive Bayes

Finite State /
Regular Languages

Context Free
Grammars

Logistic Reg.

Recursive syntax (parsing)

HMM

Rule-based

Regexes/
FSAs

CFG
[Today]

MEMM,
CRF/perc.

PCFG
[Thurs]

Shallow syntax (Morph, POS, NER...)

Mildly
Context-Sensitive

... CCG, TAG ...

Sunday, November 9, 14

Approaches to CFG parsing

• Top-down and Bottom-up search

• Shift-reduce: left-to-right

• [Today]
Dynamic programming: CKY algorithm
Exact search!

• Probabilistic/weighted variants of each of these:
Find the best parse (e.g. most probable)

12

Sunday, November 9, 14

Binarized rules

13

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

Necessary for CKY algorithm
Can convert to equivalent binarized grammar

Sunday, November 9, 14

CKY recognizer
• Fill in all length-1 spans with

possible nonterminals.

• Go bottom-up: progressively
fill each cell with possible
states, based on possible
combinations below.

• If the top cell [0,5] can
expand from ROOT, then
accept!

• To get one of possible
parses: trace backpointers

• Dynamic programming:
what’s below the cell does
not matter

14

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

Sunday, November 9, 14

15DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 15

Figure 13.11 All the ways to fill the [i,j]th cell in the CKY table.

CKY Parsing

The algorithm given in Fig. 13.10 is a recognizer, not a parser; for it to succeed it
simply has to find an S in cell [0,N]. To turn it into a parser capable of returning all
possible parses for a given input, we’ll make two simple changes to the algorithm: the
first change is to augment the entries in the table so that each non-terminal is paired
with pointers to the table entries from which it was derived (more or less as shown in
Fig. 13.12), the second change is to permit multiple versions of the same non-terminal
to be entered into the table (again as shown in Fig. 13.12.) With these changes, the
completed table contains all the possible parses for a given input. Returning an arbitrary
single parse consists of choosing an S from cell [0,n] and then recursively retrieving its
component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost.
As we saw earlier, there may be an exponential number of parses associated with a
given input. In such cases, returning all the parses will have an unavoidable exponential

Sunday, November 9, 14

CKY recognizer

16

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

17

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

CKY recognizer

18

DR
AF
T

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries fromL1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point

(J&M has a slightly different cell
ordering. Both OK.)

0 1 2 3 4 5

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

DR
AF
T

2 Chapter 13. Parsing with Context-Free Grammars

S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 TheL1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.

Sunday, November 9, 14

19

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)

and C(2,2).

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Another way.

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Sunday, November 9, 14

Visualizing Probabilistic CKY

1 2 3 n

O(|N|n2) cells to fill

O(|N|2n) ways to fill each

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j]

Where N is the number of
nonterminals in the grammar, and
n is the length of the sentence

O(n2) cells to fill
up to N items per cell, thus
O(N n2) items to create

and
O(N2 n) ways to fill a cell

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

1 NP 4
VP 4

2 P 2
V 5

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

 NP → time
 Vst → time
 NP → flies
 VP → flies
 P → like
 V → like
 Det → an
 N → arrow

Example with cost weights per expansion
(Weighted CKY, a.k.a. Viterbi parsing)

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

1 NP 4
VP 4

2 P 2
V 5

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10

1 NP 4
VP 4

2 P 2
V 5

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8

1 NP 4
VP 4

2 P 2
V 5

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

1 NP 4
VP 4

2 P 2
V 5

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

1 NP 4
VP 4

_

2 P 2
V 5

_

3 Det 1
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

1 NP 4
VP 4

_

2 P 2
V 5

_

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

1 NP 4
VP 4

_

2 P 2
V 5

_

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_

1 NP 4
VP 4

_ _

2 P 2
V 5

_ PP 12

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_

1 NP 4
VP 4

_ _

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_

1 NP 4
VP 4

_ _

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _

1 NP 4
VP 4

_ _ NP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _

1 NP 4
VP 4

_ _ NP 18
S 21

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24

1 NP 4
VP 4

__ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

SFollow backpointers …

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

S

NP VP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

S

NP VP

VP PP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

S

NP VP

VP PP

P NP

Sunday, November 9, 14

time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5time 1 flies 2 like 3 an 4 arrow 5

0

NP 3
Vst 3

NP 10
S 8
S 13

_ _ NP 24
S 22
S 27
NP 24
S 27
S 22
S 27

1 NP 4
VP 4

_ _ NP 18
S 21
VP 18

2 P 2
V 5

_ PP 12
VP 16

3 Det 1 NP 10
4 N 8

1 S → NP VP
6 S → Vst NP
2 S → S PP
1 VP → V NP

2 VP → VP PP
1 NP → Det N

2 NP → NP PP
3 NP → NP NP
0 PP → P NP

S

NP VP

VP PP

P NP

Det N

Sunday, November 9, 14

