
1

Lecture 14
Sequence tagging, and

social media NLP

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor

Thursday, October 23, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/


• Added after lecture, will review on Thursday:

• The three main structpred models are: (1) struct perceptron, (2) crf’s, (3) structsvm’s.  All 
of them work the same at test time (decoding via the viterbi algorithm, by maximizing a 
linear goodness score).  Only at training time are they different.

• Averaged perceptron is probably the simplest to implement and use.  Lots of 
practitioners in NLP who don’t care about fancy machine learning often use it.  I actually 
like CRF’s myself because of they have a probabilistic interpretation, but that doesn’t 
always matter.  Training CRF’s is slightly more complicated than struct perceptrons (not 
that much more complicated, but like a lecture’s worth of material), so I figured we could 
skip it in this class.

• Instead of averaging, you can also do early stopping: keep a development set and evaluate 
accuracy on it every iteration through the data.  Choose the theta that did best.  I don’t 
know which method is better (different researchers may prefer different methods).  
Averaging has the advantage that there aren’t really any hyperparameters to tune (well, 
the learning rate to a certain extent).

• Why does averaging work?  Theta is bouncing a lot around the space, because the 
perceptron doesn’t know how to prefer solutions according to the magnitude of the 
errors it makes.  The value of theta will be overfitted towards doing well on the most 
recent examples it’s seen.  If you average, you average away some of the noise.  Averaging 
is used in other areas of machine learning too.  It’s a form of regularization.

• Perceptron learning is actually a form of gradient descent.  It’s not on the logistic 
regression log-likelihood, but instead the gradients of a different function (the “1-0” loss).

• The Collins 2002 paper that introduced the structured perceptron is still great to read for more 
details: http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf

• More on the classification perceptron: see Hal Daume’s book chapter draft, 
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf2

Thursday, October 23, 14

http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf
http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf


• Is perceptron learning a form of gradient descent?  Yes!

• Stochastic gradient descent (ascent) algorithm: on every training 
example, increment gradient

✓ := ✓ + ⌘gi(xi, yi)

gradient for just one example

• Perceptron as SGD• Log-linear gradient for SGD

In both cases: loss gradients want to make gold-
standard features match predicted-structure 
features.  Either you care about a distribution 
over all outputs ... or just the best output

y

⇤
= argmax

y
✓

T
f(x, y)

perceptron neg-loss:
different measure of evaluating model predictions

gi =
@

@✓j

⇥
✓

T
f(xi, yi)� ✓

T
f(xi, y

⇤)
⇤

= fj(xi, yi)� fj(xi, y
⇤)

log-likelihood:
how good model is at predicting gold y_i

feature’s expected value,
under model’s prediction distribution

gi =
@

@✓j

h
✓

T
f(xi, yi)� log

X

y02Y
exp ✓

T
f(xi, y

0
)

i

= fj(xi, yi)�
X

y0

p(y

0|x)fj(xi, y
0
)

Thursday, October 23, 14



• Perceptron as SGD• Log-linear gradient for SGD

In both cases: loss gradients want to make gold-
standard features match predicted-structure 
features.  Either you care about a distribution 
over all outputs ... or just the best output

y

⇤
= argmax

y
✓

T
f(x, y)

perceptron neg-loss:
different measure of evaluating model predictions

gi =
@

@✓j

⇥
✓

T
f(xi, yi)� ✓

T
f(xi, y

⇤)
⇤

= fj(xi, yi)� fj(xi, y
⇤)

log-likelihood:
how good model is at predicting gold y_i

feature’s expected value,
under model’s prediction distribution

gi =
@

@✓j

h
✓

T
f(xi, yi)� log

X

y02Y
exp ✓

T
f(xi, y

0
)

i

= fj(xi, yi)�
X

y0

p(y

0|x)fj(xi, y
0
)

Conditional Random Fields
Lafferty, McCallum, Pereira 2001

Structured Perceptron
Collins 2002

Thursday, October 23, 14



3.
7.

C
O

N
C

L
U

SI
O

N
10

7

approach loss(x,y; h) training expense notes

generative models
(3.3)

− log pw(x,y) if multinomial-based,
easy to train

can answer “many
questions,” but the
model must explain
all evidence

globally
normalized
conditional
models (3.5)

− log pw(y | x) = −w"g(x,y) + zw(x) require inference for
feature expectations
and zw

allow arbitrary local
features; hybridize
generative and
discriminative
approaches

perceptron (3.6.2) − w"g(x,y) + max
y′∈Yx

w"g(x,y′) only requires a
decoder

no probabilistic
interpretation or
explicit
regularization

large margin
models (3.6)

− w"g(x,y) + max
y′∈Yx

w"g(x,y′) + cost(x,y′,y) only require a
cost-augmented
decoder

incorporate cost
function; no
probabilistic
interpretation

Figure 3.3: A comparison of the main learning methods discussed in this chapter. The form of the predictor h(x) is assumed to be a
linear decoder, argmaxy∈Yx

w"g(x, y).

Noah Smith,
Linguistic Structure Prediction, page 107
link on course webpage

Thursday, October 23, 14



Averaging vs. early stopping

• Why does the perceptron keep flip flopping?

• This induces overfitting: cares too much about whatever 
it last saw

• Solution #1: early stopping

• Solution #2: averaging (or voting...)

• Averaging seems to be the most popular:
no fiddly hyperparameters to tune.

• Perceptrons don’t allow a regularization term ... averaging is 
an alternate form of anti-overfitting control

• Avg. perceptron seems to be the most popular 
supervised struct. pred. algorithm for people who don’t 
care about machine learning and just want to do NLP.  
(“code to usefulness ratio”...)

6

Thursday, October 23, 14



7

1.2 Graphical Models 7

Logistic Regression

HMMs

Linear-chain CRFs

Naive Bayes
SEQUENCE

SEQUENCE

CONDITIONAL CONDITIONAL

Generative directed models

General CRFs

CONDITIONAL

General
GRAPHS

General
GRAPHS

Figure 1.2 Diagram of the relationship between naive Bayes, logistic regression,
HMMs, linear-chain CRFs, generative models, and general CRFs.

Furthermore, even when naive Bayes has good classification accuracy, its prob-
ability estimates tend to be poor. To understand why, imagine training naive
Bayes on a data set in which all the features are repeated, that is, x =
(x1, x1, x2, x2, . . . , xK , xK). This will increase the confidence of the naive Bayes
probability estimates, even though no new information has been added to the data.
Assumptions like naive Bayes can be especially problematic when we generalize
to sequence models, because inference essentially combines evidence from di↵erent
parts of the model. If probability estimates at a local level are overconfident, it
might be di�cult to combine them sensibly.
Actually, the di↵erence in performance between naive Bayes and logistic regression
is due only to the fact that the first is generative and the second discriminative;
the two classifiers are, for discrete input, identical in all other respects. Naive Bayes
and logistic regression consider the same hypothesis space, in the sense that any
logistic regression classifier can be converted into a naive Bayes classifier with the
same decision boundary, and vice versa. Another way of saying this is that the naive
Bayes model (1.5) defines the same family of distributions as the logistic regression
model (1.7), if we interpret it generatively as

p(y,x) =
exp {

P

k �kfk(y,x)}
P

ỹ,x̃ exp {
P

k �kfk(ỹ, x̃)} . (1.9)

This means that if the naive Bayes model (1.5) is trained to maximize the con-
ditional likelihood, we recover the same classifier as from logistic regression. Con-
versely, if the logistic regression model is interpreted generatively, as in (1.9), and is
trained to maximize the joint likelihood p(y,x), then we recover the same classifier
as from naive Bayes. In the terminology of Ng and Jordan [2002], naive Bayes and
logistic regression form a generative-discriminative pair.
The principal advantage of discriminative modeling is that it is better suited to

From Sutton and McCallum
tutorial on CRFs

Thursday, October 23, 14



Applications of sequence tagging

8

Thursday, October 23, 14



Document segmentation

38  files belonging to 7 UseNet FAQs
Tagging decisions are at the line level

Example:

<head>  X-NNTP-Poster: NewsHound v1.33
<head>  Archive-name: acorn/faq/part2
<head>  Frequency: monthly
<head>  
<question> 2.6) What configuration of serial cable should I use?
<answer> 
<answer>      Here follows a diagram of the necessary connection
<answer>  programs to work properly.  They are as far as I know 
<answer>  agreed upon by commercial comms software developers fo
<answer> 
<answer>     Pins 1, 4, and 8 must be connected together inside
<answer>  is to avoid the well known serial port chip bugs.  The

Thursday, October 23, 14



Features in Experiments

begins-with-number
begins-with-ordinal
begins-with-punctuation
begins-with-question-word
begins-with-subject
blank
contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe

contains-question-mark
contains-question-word
ends-with-question-mark
first-alpha-is-capitalized
indented
indented-1-to-4
indented-5-to-10
more-than-one-third-space
only-punctuation
prev-is-blank
prev-begins-with-ordinal
shorter-than-30

Thursday, October 23, 14



Results for FAQ segmentation

Log. Reg. Context
important!

Features 
important!

Thursday, October 23, 14



Named Entity Recognition

12

CoNLL ’09

Design Challenges and Misconceptions in Named Entity Recognition∗ † ‡

Lev Ratinov Dan Roth
Computer Science Department

University of Illinois
Urbana, IL 61801 USA

{ratinov2,danr}@uiuc.edu

Abstract

We analyze some of the fundamental design
challenges and misconceptions that underlie
the development of an efficient and robust
NER system. In particular, we address issues
such as the representation of text chunks, the
inference approach needed to combine local
NER decisions, the sources of prior knowl-
edge and how to use them within an NER
system. In the process of comparing several
solutions to these challenges we reach some
surprising conclusions, as well as develop an
NER system that achieves 90.8 F1 score on
the CoNLL-2003 NER shared task, the best
reported result for this dataset.

1 Introduction

Natural Language Processing applications are char-
acterized by making complex interdependent deci-
sions that require large amounts of prior knowledge.
In this paper we investigate one such application–
Named Entity Recognition (NER). Figure 1 illus-
trates the necessity of using prior knowledge and
non-local decisions in NER. In the absence of mixed
case information it is difficult to understand that

∗ The system and the Webpages dataset are available at:
http://L2R.cs.uiuc.edu/∼cogcomp/software.php

† This work was supported by NSF grant NSF SoD-HCER-
0613885, by MIAS, a DHS-IDS Center for Multimodal In-
formation Access and Synthesis at UIUC and by an NDIIPP
project from the National Library of Congress.

‡ We thank Nicholas Rizzolo for the baseline LBJ NER
system, Xavier Carreras for suggesting the word class models,
and multiple reviewers for insightful comments.

SOCCER - [PER BLINKER] BAN LIFTED .
[LOC LONDON] 1996-12-06 [MISC Dutch] forward
[PER Reggie Blinker] had his indefinite suspension
lifted by [ORG FIFA] on Friday and was set to make
his [ORG Sheffield Wednesday] comeback against
[ORG Liverpool] on Saturday . [PER Blinker] missed
his club’s last two games after [ORG FIFA] slapped a
worldwide ban on him for appearing to sign contracts for
both [ORG Wednesday] and [ORG Udinese] while he was
playing for [ORG Feyenoord].

Figure 1: Example illustrating challenges in NER.

“BLINKER” is a person. Likewise, it is not obvi-
ous that the last mention of “Wednesday” is an orga-
nization (in fact, the first mention of “Wednesday”
can also be understood as a “comeback” which hap-
pens onWednesday). AnNER system could take ad-
vantage of the fact that “blinker” is also mentioned
later in the text as the easily identifiable “Reggie
Blinker”. It is also useful to know that Udinese
is a soccer club (an entry about this club appears
in Wikipedia), and the expression “both Wednesday
and Udinese” implies that “Wednesday” and “Udi-
nese” should be assigned the same label.
The above discussion focuses on the need for ex-

ternal knowledge resources (for example, that Udi-
nese can be a soccer club) and the need for non-
local features to leverage the multiple occurrences
of named entities in the text. While these two needs
have motivated some of the research in NER in
the last decade, several other fundamental decisions
must be made. These include: what model to use for

Example from Ratinov and Roth 2009

The task is usually defined as:
identify segments in text that are names,

and some coarse types for them

Thursday, October 23, 14



Named Entity Recognition
as sequence tagging

After meeting with the Denver Post Editorial Board, 
     O          O         O     O    B-ORG  I-ORG  I-ORG     I-ORG
Virginia Lake traveled to Gile State Forest New Hampshire
  B-PER   I-PER       O       O B-LOC I-LOC I-LOC  B-LOC I-LOC
where she went camping with her daughter Anne’s Girl Scout Troop.
    O       O      O          O           O      O        O        B-PER    B-ORG I-ORG I-ORG

PER
LOC
ORG

BIO-n
otati

on

• State-of-the-art performance reported in the range 
85 to 94% F-score (avg of prec/rec), depending on 
the annotated dataset
http://www.aclweb.org/aclwiki/index.php?title=Named_Entity_Recognition_(State_of_the_art)

• But keep in mind your training data and features...
http://nlp.stanford.edu:8080/corenlp/process
Who is seeing Skrillex today?

Thursday, October 23, 14

http://www.aclweb.org/aclwiki/index.php?title=Named_Entity_Recognition_(State_of_the_art)
http://www.aclweb.org/aclwiki/index.php?title=Named_Entity_Recognition_(State_of_the_art)
http://nlp.stanford.edu:8080/corenlp/process
http://nlp.stanford.edu:8080/corenlp/process


Application:
Social media NLP

• Sequence models for online conversational text

• Why is online conversational text interesting or 
hard?

• Some material borrowed from Jacob Eisenstein

• Useful resource:  Alan Ritter’s social media NLP 
course http://aritter.github.io/courses/5539.html

14

Thursday, October 23, 14

http://aritter.github.io/courses/5539.html
http://aritter.github.io/courses/5539.html


15

  

A partial taxonomy of Twitter messages

Celebrity self-promotion

Links to blog and web 
content

Official announcements

Business advertising

Status messages

Group conversation

Personal conversation

Thursday, October 23, 14



Isn’t this “bad language”?

• Text in computer-mediated communication 
(SMS, social media, IRC....)
has shortenings, abbreviations, and grammar 
that’s very different than standard written 
English.

• Is it “bad language”?

• Why is it so different?

16

Thursday, October 23, 14



Are users illiterate?

• ... No.

17

Thursday, October 23, 14



Length limits?

• ... No.

18

standard length alternative length
your 85.1± 0.4 ur 81.9± 0.6you’re 90.0± 0.1
with 87.9± 0.3 wit 78.8± 0.7

going 82.7± 0.5 goin 72.2± 1.0
know 86.1± 0.4 kno 78.4± 1.0
about 88.9± 0.4 bout 74.5± 0.7

Table 1: Average length of messages containing standard
forms and their shortenings

case in which the standard meaning was intended for
wit, and none for bout.

The average message lengths are shown in Ta-
ble 1. In all five cases, the non-standard form tends
to be used in shorter messages — not in long mes-
sages near the 140 character limit. Moreover, this
difference is substantially greater than the saving of
one or two characters offered by shortened form.
This is not consistent with the explanation that Twit-
ter’s character limit is the primary factor driving the
use of shortened forms. It is still possible that Twit-
ter’s length limitations might indirectly cause word
shortenings: for example, by legitimizing shortened
forms or causing authors to develop a habit of pre-
ferring them. But factors other than the length limit
must be recruited to explain why such conventions
or habits apply only to some messages and not oth-
ers.

2.3 Text input affordances

Text input affordances — whether standard key-
boards or predictive entry on mobile devices — play
a role in computer-mediated communication that is
perhaps under-appreciated. Gouws et al. (2011b) in-
vestigate orthographic variation on Twitter, and find
differences across devices: for example, that mes-
sages from iPhones include more contractions than
messages from Blackberries, and that tweets sent
from the web browser are more likely to drop vow-
els. While each affordance facilitates some writ-
ing styles and inhibits others, the affordances them-
selves are unevenly distributed across users. For ex-
ample, older people may prefer standard keyboards,
and wealthier people may be more likely to own
iPhones. Affordances are a moving target: new de-
vices and software are constantly becoming avail-
able, the software itself may adapt to the user’s in-

put, and the user may adapt to the software and de-
vice.

2.4 Pragmatics

Emoticons are frequently thought of as introduc-
ing an expressive, non-verbal component into writ-
ten language, mirroring the role played by facial ex-
pressions in speech (Walther and D’Addario, 2001),
but they can also be seen as playing a pragmatic
function: marking an utterance as facetious, or
demonstrating a non-confrontational, less invested
stance (Dresner and Herring, 2010). In many cases,
phrasal abbreviations like lol (laugh out loud),
lmao (laughing my ass off ), smh (shake my head),
and ikr (i know, right?) play a similar role: yea she
dnt like me lol; lmao I’m playin son. A key differ-
ence from emoticons is that abbreviations can act
as constituents, as in smh at your ignorance. An-
other form of non-standard language is expressive

lengthening (e.g., coooolllllll), found by Brody and
Diakopoulos (2011) to indicate subjectivity and sen-
timent. In running dialogues — such as in online
multiplayer games — the symbols * and ˆ can play
an explicit pragmatic function (Collister, 2011; Col-
lister, 2012).

2.5 Social variables

A series of papers has documented the interac-
tions between social media text and social vari-
ables such as age (Burger and Henderson, 2006;
Argamon et al., 2007; Rosenthal and McKeown,
2011), gender (Burger et al., 2011; Rao et al., 2010),
race (Eisenstein et al., 2011), and location (Eisen-
stein et al., 2010; Wing and Baldridge, 2011). From
this literature, it is clear that many of the features
that characterize bad language have strong associa-
tions with specific social variables. In some cases,
these associations mirror linguistic variables known
from speech — such as geographically-associated
lexical items like hella, or transcriptions of phono-
logical variables like “g-dropping” (Eisenstein et al.,
2010). But in other cases, apparently new lexical
items, such as the abbreviations ctfu, lls, and af,
acquire surprisingly strong associations with geo-
graphical areas and demographic groups (Eisenstein
et al., 2011).

A robust finding from the sociolinguistics litera-
ture is that non-standard forms that mark social vari-

standard length alternative length
your 85.1± 0.4 ur 81.9± 0.6you’re 90.0± 0.1
with 87.9± 0.3 wit 78.8± 0.7

going 82.7± 0.5 goin 72.2± 1.0
know 86.1± 0.4 kno 78.4± 1.0
about 88.9± 0.4 bout 74.5± 0.7

Table 1: Average length of messages containing standard
forms and their shortenings

case in which the standard meaning was intended for
wit, and none for bout.

The average message lengths are shown in Ta-
ble 1. In all five cases, the non-standard form tends
to be used in shorter messages — not in long mes-
sages near the 140 character limit. Moreover, this
difference is substantially greater than the saving of
one or two characters offered by shortened form.
This is not consistent with the explanation that Twit-
ter’s character limit is the primary factor driving the
use of shortened forms. It is still possible that Twit-
ter’s length limitations might indirectly cause word
shortenings: for example, by legitimizing shortened
forms or causing authors to develop a habit of pre-
ferring them. But factors other than the length limit
must be recruited to explain why such conventions
or habits apply only to some messages and not oth-
ers.

2.3 Text input affordances

Text input affordances — whether standard key-
boards or predictive entry on mobile devices — play
a role in computer-mediated communication that is
perhaps under-appreciated. Gouws et al. (2011b) in-
vestigate orthographic variation on Twitter, and find
differences across devices: for example, that mes-
sages from iPhones include more contractions than
messages from Blackberries, and that tweets sent
from the web browser are more likely to drop vow-
els. While each affordance facilitates some writ-
ing styles and inhibits others, the affordances them-
selves are unevenly distributed across users. For ex-
ample, older people may prefer standard keyboards,
and wealthier people may be more likely to own
iPhones. Affordances are a moving target: new de-
vices and software are constantly becoming avail-
able, the software itself may adapt to the user’s in-

put, and the user may adapt to the software and de-
vice.

2.4 Pragmatics

Emoticons are frequently thought of as introduc-
ing an expressive, non-verbal component into writ-
ten language, mirroring the role played by facial ex-
pressions in speech (Walther and D’Addario, 2001),
but they can also be seen as playing a pragmatic
function: marking an utterance as facetious, or
demonstrating a non-confrontational, less invested
stance (Dresner and Herring, 2010). In many cases,
phrasal abbreviations like lol (laugh out loud),
lmao (laughing my ass off ), smh (shake my head),
and ikr (i know, right?) play a similar role: yea she
dnt like me lol; lmao I’m playin son. A key differ-
ence from emoticons is that abbreviations can act
as constituents, as in smh at your ignorance. An-
other form of non-standard language is expressive

lengthening (e.g., coooolllllll), found by Brody and
Diakopoulos (2011) to indicate subjectivity and sen-
timent. In running dialogues — such as in online
multiplayer games — the symbols * and ˆ can play
an explicit pragmatic function (Collister, 2011; Col-
lister, 2012).

2.5 Social variables

A series of papers has documented the interac-
tions between social media text and social vari-
ables such as age (Burger and Henderson, 2006;
Argamon et al., 2007; Rosenthal and McKeown,
2011), gender (Burger et al., 2011; Rao et al., 2010),
race (Eisenstein et al., 2011), and location (Eisen-
stein et al., 2010; Wing and Baldridge, 2011). From
this literature, it is clear that many of the features
that characterize bad language have strong associa-
tions with specific social variables. In some cases,
these associations mirror linguistic variables known
from speech — such as geographically-associated
lexical items like hella, or transcriptions of phono-
logical variables like “g-dropping” (Eisenstein et al.,
2010). But in other cases, apparently new lexical
items, such as the abbreviations ctfu, lls, and af,
acquire surprisingly strong associations with geo-
graphical areas and demographic groups (Eisenstein
et al., 2011).

A robust finding from the sociolinguistics litera-
ture is that non-standard forms that mark social vari-

Thursday, October 23, 14



What do you see in conversations?

• Language use is socially contingent

• Individual (every person has a dialect?)

• Social groups

• Gender

• Socioeconomic background

• Ethnicity

• Geographic region....

19

Thursday, October 23, 14



Minority dialects/languages
• “A language is a dialect with an army and navy”

• Are minority languages/dialects “incorrect”?
What accomodations are given to minority languages?

• Ukrainian vs. Russian ...

• African American dialects vs standard American English ...

• Descriptive linguistics vs. prescriptive grammarians

20

Thursday, October 23, 14



Social contingency of language

21

  

Thursday, October 23, 14



Social contingency of language

22

  

Thursday, October 23, 14



Social contingency of language

23

  

Thursday, October 23, 14



Social contingency of language

24

  

Thursday, October 23, 14



Social contingency of language

25

  

Thursday, October 23, 14



26

2010 2011 2012

af

ard

ion

lbvs

2009 2010 2011

ctfu

- -

Figure 5: Geolocations for messages containing the words af (as fuck), ard (alright), ion (i don’t), lbvs
(laughing but very serious), ctfu (cracking the fuck up), and the emoticon - - (ambivalence or annoyance).

11

Social contingency of language

Thursday, October 23, 14



Social contingency of language

27

weeks 1−50 weeks 51−100 weeks 101−150

af

ikr

ard

Thursday, October 23, 14



Alternate spellings

• Nationally, brib appears at a rate of once per 
22,000 messages, which is roughly 5% as often 
as crib. But in the New York City area, brib 
appears at a rate of once per 3,000 messages. 

28

This approach can be applied to the dataset described in Section 2, with each region corresponding to
a metropolitan statistical area (MSA). MSAs are defined by the United States government, and include the
regional area around a single urban core. Using this approach, the top words for some of the largest MSAs
in the United States are:

• New York: flatbush, baii, brib, bx, staten, mta, odee, soho, deadass, werd

• Los Angeles: pasadena, venice, anaheim, dodger, disneyland, angeles, compton, ucla, dodgers, melrose

• Chicago: #chicago, lbvs, chicago, blackhawks, #bears, #bulls, mfs, cubs, burbs, bogus

• Philadelphia: jawn, ard, #phillies, sixers, phils, wawa, philadelphia, delaware, philly, phillies

The plurality of these terms are place names (underlined) and geographically-specific entities (italicized),
such as sports teams (dodgers, sixers), businesses (wawa, a grocery store), and local government agencies
(mta, which is responsible for mass transportation in New York City). However, there are several other types
of words, which are of greater interest for dialect.

• Dialect words from speech. The term jawn was already discussed as a feature of spoken Philadelphia
English, and the terms burbs (suburbs) and bogus (fake) may also be recognized in spoken language.
The term deadass — typically meaning “very”, as in deadass serious — may be less familiar, and
might have passed unnoticed without the application of automated techniques.

• Alternative spellings. The spelling werd substitutes for the term word — but only in the senses
identified by Cutler (1999), as in oh, werd? (oh really? ), or as a�rmation, as in werd, me too. Note
that the spelling word is also used in these same contexts, but the spelling werd is almost never used
in the standard sense.

More remotely, ard is an alternative spelling for alright, as in:

(4) @name ard let me kno

(5) lol (laugh out loud) u’ll be ard

Similarly, brib is an alternative spelling for crib, which in turn signifies home.

(6) bbq (barbecue) at my fams (family’s) brib

(7) in da brib, just took a shower

Nationally, brib appears at a rate of once per 22,000 messages, which is roughly 5% as often as crib.
But in the New York City area, brib appears at a rate of once per 3,000 messages.

A final example is baii, which is an alternative to boy, in the sense of a friend or partner. As shown in
the second example below, it may also function as a pragmatic marker: similar to man in Cheshire’s
(2013) study of urban English in the U.K., it can be used without referring to any specific individual.

(8) look at my baii @name congrats again wish i was there 2 see u walk baii

(9) i’m outta here baii

• Abbreviations. The abbreviation lol (laugh out loud) is well-known in the discourse about social
media text, but several lesser-known abbreviations have strong regional a�liations. These include lbvs
(laughing but very serious) and mfs (motherfuckers, as in these mfs are crazy). My prior work with
collaborators at Carnegie Mellon University (Eisenstein et al., 2010) identified several other phrasal
abbreviations with non-uniform geographical distributions, including af (an intensifier signifying as
fuck), ctfu (cracking the fuck up), and lls (laughing like shit).

• Combinations A few words appear to combine aspects of multiple types. The word odee is a phonetic
spelling of the abbreviation od, which stands for overdose, but it is now used as an intensifier with
considerable syntactic flexibility.

6

Thursday, October 23, 14



Final 
consonant 
dropping

Avg. Census 
demographics 
of counties in 
which users of 
each term live

Figure 1: Average demographics of the counties in which users of each term live, with 95% confidence intervals

Thursday, October 23, 14



From
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter

Thursday, October 23, 14

http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter


31

From
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter

Thursday, October 23, 14

http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter


32

From
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter

Thursday, October 23, 14

http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter
http://www.languagejones.com/blog-1/2014/9/26/big-data-and-black-twitter


33

Client % In-Vocabulary

Facebook 88%
Twitter for iPhone 84%

Twitter for Blackberry 83%
Web 82%

UberTwitter 78%
Snaptu 73%

Overall 81%

Table 5: Percentage of in-vocabulary found in large En-
glish lexicon for different Twitter clients.

important to note that these results were computed
over hundreds of thousands of tokens, and hence
the variance of our estimates is very small. This
means that the differences observed here are statis-
tically meaningful, even though the absolute differ-
ences tend to be somewhat small.

These results indicate that microtexts composed
by users in different geographic locations exhibit
different amounts of out-of-vocabulary terms. Users
in Australia, the United Kingdom, Hong Kong, and
the East Coast of the United States (e.g., New York
City) include fewer out-of-vocabulary terms in their
Tweets than average. However, users from the West
Coast of the United States (e.g., Los Angeles, CA)
and Hawaii are on-par with the overall average, but
include 5% more out-of-vocabulary terms than the
Australian users.

As expected, the locations with fewer-than-
average in-vocabulary tokens are associated with
non-English speaking countries, despite the output
from the classifier.

5.1.2 Twitter Clients
In a similar experiment, we also investigated the

frequency of out-of-vocabulary terms conditioned
on the Twitter client (or “source”) used to compose
the message. Example Twitter clients include the
Web-based client at www.twitter.com, official
Twitter clients for specific mobile platforms (e.g.,
iPhone, Android, etc.), and third-party clients. Each
client has its own characteristics, target user base,
and features.

In Table 5, we show the percentage of in-
vocabulary terms for a sample of the most widely
used Twitter clients. Unlike the geographic location-

based analysis, which showed only minor differ-
ences amongst the user populations, we see much
more dramatic differences here. Some clients, such
as Facebook, which provides a way of cross-posting
status updates between the two services, has the
largest percentage of in-vocabulary terms of the ma-
jor clients in our data.

One interesting, but unexpected, finding is that the
mobile phone (i.e., iPhone and Blackberry) clients
have fewer out-of-vocabulary terms, on average,
than the Web-based client. This suggests that ei-
ther the users of the clients are less likely to misspell
words or use slang terminology or that the clients
may have better or more intuitive spell checking ca-
pabilities. A more thorough analysis is necessary to
better understand the root cause of this phenomenon.

At the other end of the spectrum are the UberTwit-
ter and Snaptu clients, which exhibit a substantially
larger number of out-of-vocabulary terms. These
clients are also typically used on mobile devices. As
with our previous analysis, it is difficult to pinpoint
the exact cause of such behavior, but we hypothe-
size that it is a function of user demographics and
difficulties associated with inputting text on mobile
devices.

5.2 Contextual Analysis
In this section, we test the hypothesis that different
user populations make use of different types of lex-
ical transformations. To achieve this goal, we make
use of our noisy text cleanser. For each Twitter mes-
sage run through the cleanser, we record the origi-
nal and cleaned version of each term. For all of the
terms that the cleanser corrects, we automatically
identify which (if any) of the transformation rules
listed in Table 2 explain the transformation between
the original and clean version of the term. We use
this output to analyze the distribution of transforma-
tions observed across different user populations.

We begin by analyzing the types of transforma-
tions observed across Twitter clients. Figure 1 plots
the (normalized) distribution of lexical transforma-
tions observed for the Web, Twitter for Blackberry,
Twitter for iPhone, and UberTwitter clients, grouped
by the transformations. We also group the trans-
formations by the individual clients in Figure 2 for
more direct comparison.

The results show that Web users tend to use more

26

Client % In-Vocabulary

Facebook 88%
Twitter for iPhone 84%

Twitter for Blackberry 83%
Web 82%

UberTwitter 78%
Snaptu 73%

Overall 81%

Table 5: Percentage of in-vocabulary found in large En-
glish lexicon for different Twitter clients.

important to note that these results were computed
over hundreds of thousands of tokens, and hence
the variance of our estimates is very small. This
means that the differences observed here are statis-
tically meaningful, even though the absolute differ-
ences tend to be somewhat small.

These results indicate that microtexts composed
by users in different geographic locations exhibit
different amounts of out-of-vocabulary terms. Users
in Australia, the United Kingdom, Hong Kong, and
the East Coast of the United States (e.g., New York
City) include fewer out-of-vocabulary terms in their
Tweets than average. However, users from the West
Coast of the United States (e.g., Los Angeles, CA)
and Hawaii are on-par with the overall average, but
include 5% more out-of-vocabulary terms than the
Australian users.

As expected, the locations with fewer-than-
average in-vocabulary tokens are associated with
non-English speaking countries, despite the output
from the classifier.

5.1.2 Twitter Clients
In a similar experiment, we also investigated the

frequency of out-of-vocabulary terms conditioned
on the Twitter client (or “source”) used to compose
the message. Example Twitter clients include the
Web-based client at www.twitter.com, official
Twitter clients for specific mobile platforms (e.g.,
iPhone, Android, etc.), and third-party clients. Each
client has its own characteristics, target user base,
and features.

In Table 5, we show the percentage of in-
vocabulary terms for a sample of the most widely
used Twitter clients. Unlike the geographic location-

based analysis, which showed only minor differ-
ences amongst the user populations, we see much
more dramatic differences here. Some clients, such
as Facebook, which provides a way of cross-posting
status updates between the two services, has the
largest percentage of in-vocabulary terms of the ma-
jor clients in our data.

One interesting, but unexpected, finding is that the
mobile phone (i.e., iPhone and Blackberry) clients
have fewer out-of-vocabulary terms, on average,
than the Web-based client. This suggests that ei-
ther the users of the clients are less likely to misspell
words or use slang terminology or that the clients
may have better or more intuitive spell checking ca-
pabilities. A more thorough analysis is necessary to
better understand the root cause of this phenomenon.

At the other end of the spectrum are the UberTwit-
ter and Snaptu clients, which exhibit a substantially
larger number of out-of-vocabulary terms. These
clients are also typically used on mobile devices. As
with our previous analysis, it is difficult to pinpoint
the exact cause of such behavior, but we hypothe-
size that it is a function of user demographics and
difficulties associated with inputting text on mobile
devices.

5.2 Contextual Analysis
In this section, we test the hypothesis that different
user populations make use of different types of lex-
ical transformations. To achieve this goal, we make
use of our noisy text cleanser. For each Twitter mes-
sage run through the cleanser, we record the origi-
nal and cleaned version of each term. For all of the
terms that the cleanser corrects, we automatically
identify which (if any) of the transformation rules
listed in Table 2 explain the transformation between
the original and clean version of the term. We use
this output to analyze the distribution of transforma-
tions observed across different user populations.

We begin by analyzing the types of transforma-
tions observed across Twitter clients. Figure 1 plots
the (normalized) distribution of lexical transforma-
tions observed for the Web, Twitter for Blackberry,
Twitter for iPhone, and UberTwitter clients, grouped
by the transformations. We also group the trans-
formations by the individual clients in Figure 2 for
more direct comparison.

The results show that Web users tend to use more

26

From Gouws et al. 2011 ...
What drives alternate spellings?  Typing UI?

Thursday, October 23, 14



NLP on social media’s own terms

• Any NLP, starting with POS tagging, is going to 
require different models/resources than 
traditional written English

34

Improved Part-of-Speech Tagging for Online Conversational Text
with Word Clusters

Olutobi Owoputi⇤ Brendan O’Connor⇤ Chris Dyer⇤
Kevin Gimpel† Nathan Schneider⇤ Noah A. Smith⇤

⇤School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
†Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Corresponding author: brenocon@cs.cmu.edu

Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
^

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

On a PTB-trained tagging model:
http://nlp.stanford.edu:8080/corenlp/process

Thursday, October 23, 14

http://nlp.stanford.edu:8080/corenlp/process
http://nlp.stanford.edu:8080/corenlp/process


• How to make a new POS tagger?

• Annotate some data

• Train a supervised sequence tagger

• Have good features

• Use semi-supervised learning to leverage unlabeled 
data

• Two examples: POS for Twitter

• Ritter et al. 2011 (UW Twitter NLP)

• Gimpel et al. 2011, Owoputi et al. 2013
(ARK TweetNLP)

35

Thursday, October 23, 14



Just a little annotated data

36

#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments
We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (�1,�2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.

●

●

●

● ●● ●

1e+03 1e+05 1e+07

75
80

85
90

Number of Unlabeled Tweets

Ta
gg

in
g 

Ac
cu

ra
cy

●

●

●
●

●● ●

1e+03 1e+05 1e+07

0.
60

0.
65

0.
70

Number of Unlabeled Tweets
To

ke
n 

C
ov

er
ag

e

Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (�1.4) 79.3 (�5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.

Thursday, October 23, 14



Features  (MEMM tagger)

• Direct representations

• Lexical identity

• Shape features

• Character n-gram prefix/suffix of word

• Regex detectors

• Regex-based emoticon detectors

• Regexes for hashtags, @-mentions

• Dictionary lookups

• Traditional POS dictionary

• Word clusters (next few slides)

• ... All of these at next/prev positions

• Does the algorithm matter?

• First-order MEMM

• Greedy decoding has same performance as Viterbi

• Greedy decoding is 3 times faster, at least for us

• CRF has slightly better performance (0.3% or so?)

Thursday, October 23, 14



38

Features  (MEMM tagger)

Thursday, October 23, 14



Word clustering

• Unsupervised HMM to induce word classes.
(“Brown clustering”)

• Train on lots of unlabeled data

• 56 M tweets, 847 M tokens

• Compare to annotated data:
3000 tweets, 30k tokens 

39

Thursday, October 23, 14



Word clustering

40

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
Thursday, October 23, 14

http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html
http://www.ark.cs.cmu.edu/TweetNLP/cluster_viewer.html


Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol

A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to h@MENTIONi and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ) hURL-bit.lyi). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and

Word clusters as featuresImproved Part-of-Speech Tagging for Online Conversational Text
with Word Clusters

Olutobi Owoputi⇤ Brendan O’Connor⇤ Chris Dyer⇤
Kevin Gimpel† Nathan Schneider⇤ Noah A. Smith⇤

⇤School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
†Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Corresponding author: brenocon@cs.cmu.edu

Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

[This paper is forthcoming in Proceedings of
NAACL 2013; Atlanta, GA, USA.]

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
^

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There
is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);

Thursday, October 23, 14



Clusters help a lot

42

Feature set OCT27TEST DAILY547 NPSCHATTEST
All features 91.60 92.80 91.19 1

with clusters; without tagdicts, namelists 91.15 92.38 90.66 2
without clusters; with tagdicts, namelists 89.81 90.81 90.00 3
only clusters (and transitions) 89.50 90.54 89.55 4
without clusters, tagdicts, namelists 86.86 88.30 88.26 5

Gimpel et al. (2011) version 0.2 88.89 89.17 6
Inter-annotator agreement (Gimpel et al., 2011) 92.2 7
Model trained on all OCT27 93.2 8

Table 2: Tagging accuracies (%) in ablation experiments. OCT27TEST and DAILY547 95% confidence intervals are
roughly ±0.7%. Our final tagger uses all features and also trains on OCT27TEST, achieving 93.2% on DAILY547.

tures, affix n-grams, capitalization, emoticon pat-
terns, etc.—and the accuracy is in fact still better
than the previous work (row 4).18

We also wanted to know whether to keep the tag
dictionary and name list features, but the splits re-
ported in Fig. 2 did not show statistically signifi-
cant differences; so to better discriminate between
ablations, we created a lopsided train/test split of
all data with a much larger test portion (26,974 to-
kens), having greater statistical power (tighter con-
fidence intervals of ± 0.3%).19 The full system got
90.8% while the no–tag dictionary, no-namelists ab-
lation had 90.0%, a statistically significant differ-
ence. Therefore we retain these features.

Compared to the tagger in Gimpel et al., most of
our feature changes are in the new lexical features
described in §3.5.20 We do not reuse the other lex-
ical features from the previous work, including a
phonetic normalizer (Metaphone), a name list con-
sisting of words that are frequently capitalized, and
distributional features trained on a much smaller un-
labeled corpus; they are all worse than our new
lexical features described here. (We did include,
however, a variant of the tag dictionary feature that
uses phonetic normalization for lookup; it seemed to
yield a small improvement.)

18Furthermore, when evaluating the clusters as unsupervised
(hard) POS tags, we obtain a many-to-one accuracy of 89.2%
on DAILY547. Before computing this, we lowercased the text
to match the clusters and removed tokens tagged as URLs and
at-mentions.

19Reported confidence intervals in this paper are 95% bino-
mial normal approximation intervals for the proportion of cor-
rectly tagged tokens: ±1.96

p
p(1� p)/n

tokens

. 1/
p
n.

20Details on the exact feature set are available in a technical
report (Owoputi et al., 2012), also available on the website.

Non-traditional words. The word clusters are es-
pecially helpful with words that do not appear in tra-
ditional dictionaries. We constructed a dictionary
by lowercasing the union of the ispell ‘American’,
‘British’, and ‘English’ dictionaries, plus the stan-
dard Unix words file from Webster’s Second Inter-
national dictionary, totalling 260,985 word types.
After excluding tokens defined by the gold stan-
dard as punctuation, URLs, at-mentions, or emoti-
cons,21 22% of DAILY547’s tokens do not appear in
this dictionary. Without clusters, they are very dif-
ficult to classify (only 79.2% accuracy), but adding
clusters generates a 5.7 point improvement—much
larger than the effect on in-dictionary tokens (Ta-
ble 3).

Varying the amount of unlabeled data. A tagger
that only uses word clusters achieves an accuracy of
88.6% on the OCT27 development set.22 We created
several clusterings with different numbers of unla-
beled tweets, keeping the number of clusters con-
stant at 800. As shown in Fig. 3, there was initially
a logarithmic relationship between number of tweets
and accuracy, but accuracy (and lexical coverage)
levels out after 750,000 tweets. We use the largest
clustering (56 million tweets and 1,000 clusters) as
the default for the released tagger.

6.2 Evaluation on RITTERTW

Ritter et al. (2011) annotated a corpus of 787
tweets23 with a single annotator, using the PTB

21We retain hashtags since by our guidelines a #-prefixed to-
ken is ambiguous between a hashtag and a normal word, e.g. #1
or going #home.

22The only observation features are the word clusters of a
token and its immediate neighbors.

23https://github.com/aritter/twitter_nlp/
blob/master/data/annotated/pos.txt

#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments
We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (�1,�2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.

●

●

●

● ●● ●

1e+03 1e+05 1e+07

75
80

85
90

Number of Unlabeled Tweets

Ta
gg

in
g 

Ac
cu

ra
cy

●

●

●
●

●● ●

1e+03 1e+05 1e+07

0.
60

0.
65

0.
70

Number of Unlabeled Tweets

To
ke

n 
C

ov
er

ag
e

Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (�1.4) 79.3 (�5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.

#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments
We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (�1,�2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.

●

●

●

● ●● ●

1e+03 1e+05 1e+07

75
80

85
90

Number of Unlabeled Tweets
Ta

gg
in

g 
Ac

cu
ra

cy

●

●

●
●

●● ●

1e+03 1e+05 1e+07

0.
60

0.
65

0.
70

Number of Unlabeled Tweets

To
ke

n 
Co

ve
ra

ge

Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (�1.4) 79.3 (�5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.

[Ablation tests: remove a feature class, check performance]

Thursday, October 23, 14



Clusters help for nonstandard terms

43

#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments
We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (�1,�2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.

●

●

●

● ●● ●

1e+03 1e+05 1e+07

75
80

85
90

Number of Unlabeled Tweets

Ta
gg

in
g 

Ac
cu

ra
cy

●

●

●
●

●● ●

1e+03 1e+05 1e+07

0.
60

0.
65

0.
70

Number of Unlabeled Tweets

To
ke

n 
C

ov
er

ag
e

Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (�1.4) 79.3 (�5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.

Thursday, October 23, 14


