
1

Lecture 13:
Discriminative Sequence Models
(MEMM and Struct. Perceptron)

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor (http://brenocon.com)

Tuesday, October 21, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

Models for sequence tagging

y y y

x x x
HMM

• Training: (x,y) pairs

• Testing: given x, predict
• x: words (inputs)

• y: POS tags (outputs)

Indep
Log Reg,
no context

Model

y y y

x x x
ILR
with
context
features

y y y

x x x
p(yt|~x, t) / exp(✓

T
f(~x, t, yt))

Inference

Viterbi

Indep

Model diagram
(hypothetical!)

Indep

Any features you want... from the input.

p(yt|xt) / exp(✓

T
f(xt, yt))

p(~y|~x) =
Y

t

p(yt|~x, t)

Transition multinom.

p(~y, ~x) =
Y

t

p(yt|yt�1)p(xt|yt)

Emission multinom.

y

⇤
= argmax

y
p(y|x)

Tuesday, October 21, 14

Features are good

• Typically, feature-based NLP taggers use many
many binary features.

• Is this the first token in the sentence?

• Second? Third? Last? Next to last?

• Word to left? Right?

• Last 3 letters of this word? Last 3 letters of word on
left? On right?

• Is this word capitalized? Does it contain punctuation?

• Indep LogReg can’t consider POS context, only
word-based context. This seems non-ideal.

p(yt|~x, t) / exp(✓

T
f(~x, t, yt))

ILR
with
context
features

y y y

x x x
Tuesday, October 21, 14

From HMMs to MEMMs

• “Max entropy Markov Model”... is a
conditional log-linear Markov Model

y y y

x x x
HMM p(~y, ~x) =

Y

t

p(yt|yt�1)p(xt|yt)

Indep
Log Reg

y y y

x x x p(yt|~x, t) / exp(✓

T
f(~x, t, yt))

p(~y|~x) =
Y

t

p(yt|~x, t)

MEMMs can have features from the input,
and the previous state!

MEMM

y y y

x x x

p(~y|~x) =
Y

t

p(yt|yt�1, ~x, t)

p(yt|~x, t) / exp(✓

T
f(~x, t, yt�1, yt))

Tuesday, October 21, 14

Using an MEMM

• Training: this is the same training algorithm as logistic
regression.

• Testing: like an HMM, e.g. greedy or Viterbi inference.

• Issues

• Asymmetry in model: underappreciates future tags.

• (Though it appreciates them a little bit: Viterbi gives
different answers than greedy.)

• For POS tagging, MEMM’s are state of the art, esp.
with tricks (e.g use both left-to-right and right-to-left)

5

MEMM

y y y

x x x

p(~y|~x) =
Y

t

p(yt|yt�1, ~x, t)

p(yt|~x, t) / exp(✓

T
f(~x, t, yt�1, yt))

Tuesday, October 21, 14

Global structure prediction
• HMMs and MEMMs are ways to score possible

output structures, with local probabilistic models

• Why not learn parameters for a global model of
structures? Don’t assume any generation
process. Instead, use features to score the entire
structure at once. (“goodness function”)

G(y) = ✓

T
f(x, y) argmax

y
G(y)

• Is inference efficient? Depends on the structure of f.

• How to learn? If you know how to evaluate the argmax,
you can use the structured perceptron algorithm.

• There are several different global structure prediction
models out there. Related: conditional random fields,
where p(y|x) ∝ exp(goodness(y))

Prediction:

Tuesday, October 21, 14

7

f(x,y) is...

V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

Two simple feature templates

X

t

1{yt�1 = A, yt = B}
For every pair of tag
types (A,B)
“Transition features”

X

t

1{yt = A, xt = w}
For every tag type A
and word type w
“Observation features”

finna get good
V V Agold y =

Tuesday, October 21, 14

-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0f(x, y)

✓

T
f(x, y)Goodness(y) =

If every element of f(x,y) is based on only a
single tag, or neighboring tags, then the
Viterbi algorithm can calculate argmaxy G(y).

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is
numeric indexing, though
sometimes convenient to
implement as hash table.

finna get good
V V Agold y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}

Tuesday, October 21, 14

• added after lecture: I did an example on the board
to show that Viterbi can do it. those feature counts
decompose into local parts of the output structure.

9

finna get good
y1 y2 y3

G(y) = ✓
trans:y1,y2 + ✓

trans:y2,y3

+ ✓
obs:y1,finna + ✓

obs:y2,get + ✓
obs:y3,good

• each term involves two neighboring tags, or just one
tag. Therefore to maximize G wrt y, we can use the
NK^2 version of Viterbi we have done before.

Tuesday, October 21, 14

pred y* = N V A

f(x, y)
V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

f(x, y*)
N,V: 1
V,A: 1
N,finna: 1
V,get: 1
A,good: 1

f(x,y) - f(x, y*)

V,V: +1
N,V: -1
V,finna: +1
N,finna: -1

finna get good
V V Agold y =

Learning idea: want gold
y to have high scores.
Update weights so y
would have a higher
score, and y* would be
lower, next time.

Perceptron update rule:

✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]

Learning rate (hyperparam)
Tuesday, October 21, 14

-0.6 -1.0 1.1 0.5 0.0 0.8 0.5 -1.3 -1.6 0.0 0.6 0.0 -0.2 -0.2 0.8 -1.0 0.1 -1.9 1.1 1.2 -0.1 -1.0 -0.1✓
Transition features Observation features

1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0f(x, y)

1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 3 0 0 0
f(x, y⇤)

✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]

The update vector:

+1 -1⌘()

Tuesday, October 21, 14

Structured Perceptron

• Initialize theta=0

• For each example (x,y) in dataset, iterating many
times through the dataset:

• Predict y* = argmaxy theta'f(x,y)

• (If y* = y, no update.)

• Calculate feature differences and update theta.

12

✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]

Tuesday, October 21, 14

Averaged perceptron

• Perceptron is error-driven: update theta when there are
mistakes.

• If the learning algorithm never gets 100% accuracy on
the training set, it never converges. (The perceptron
doesn’t care about the magnitude of its mistakes! Unlike
log-linear models.)

• One popular solution: averaging. Average all seen values
of theta into a final solution.

13

✓̄ =
1

n

X

t

✓(t)

• t indexes every example. (If you pass through the dataset 5
times, you have 5*(num train examples) timesteps.)

• The above is inefficient, but there’s a trick to make it much
faster in practice.

Tuesday, October 21, 14

• Added after lecture, will review on Thursday:

• The three main structpred models are: (1) struct perceptron, (2) crf’s, (3) structsvm’s. All
of them work the same at test time (decoding via the viterbi algorithm, by maximizing a
linear goodness score). Only at training time are they different.

• Averaged perceptron is probably the simplest to implement and use. Lots of
practitioners in NLP who don’t care about fancy machine learning often use it. I actually
like CRF’s myself because of they have a probabilistic interpretation, but that doesn’t
always matter. Training CRF’s is slightly more complicated than struct perceptrons (not
that much more complicated, but like a lecture’s worth of material), so I figured we could
skip it in this class.

• Instead of averaging, you can also do early stopping: keep a development set and evaluate
accuracy on it every iteration through the data. Choose the theta that did best. I don’t
know which method is better (different researchers may prefer different methods).
Averaging has the advantage that there aren’t really any hyperparameters to tune (well,
the learning rate to a certain extent).

• Why does averaging work? Theta is bouncing a lot around the space, because the
perceptron doesn’t know how to prefer solutions according to the magnitude of the
errors it makes. The value of theta will be overfitted towards doing well on the most
recent examples it’s seen. If you average, you average away some of the noise. Averaging
is used in other areas of machine learning too. It’s a form of regularization.

• Perceptron learning is actually a form of gradient descent. It’s not on the logistic
regression log-likelihood, but instead the gradients of a different function (the “1-0” loss).

• The Collins 2002 paper that introduced the structured perceptron is still great to read for more
details: http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf

• More on the classification perceptron: see Hal Daume’s book chapter draft,
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf14

Tuesday, October 21, 14

http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf
http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf

Recap

• Discriminative sequence models give scoring for
output structures.

• MEMMs combine Markovian hidden structure,
plus features from words.

• Global structure prediction models allow any
scoring of the hidden structure. The structured
perceptron is a simple and effective learning
algorithm for them.

15

Tuesday, October 21, 14

