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Models for sequence tagging
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• Training: (x,y) pairs

• Testing: given x, predict
• x: words  (inputs)

• y:  POS tags (outputs)
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Features are good

• Typically, feature-based NLP taggers use many 
many binary features.

• Is this the first token in the sentence?

• Second? Third? Last? Next to last?

• Word to left?  Right?

• Last 3 letters of this word?  Last 3 letters of word on 
left?  On right?

• Is this word capitalized?  Does it contain punctuation?

• Indep LogReg can’t consider POS context, only 
word-based context.  This seems non-ideal.
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From HMMs to MEMMs

• “Max entropy Markov Model”...  is a
conditional log-linear Markov Model
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MEMMs can have features from the input, 
and the previous state!
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Using an MEMM

• Training: this is the same training algorithm as logistic 
regression.

• Testing: like an HMM, e.g. greedy or Viterbi inference.

• Issues

• Asymmetry in model: underappreciates future tags.

• (Though it appreciates them a little bit:  Viterbi gives 
different answers than greedy.)

• For POS tagging, MEMM’s are state of the art, esp. 
with tricks (e.g use both left-to-right and right-to-left)
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Global structure prediction
• HMMs and MEMMs are ways to score possible 

output structures, with local probabilistic models

• Why not learn parameters for a global model of 
structures?  Don’t assume any generation 
process.  Instead, use features to score the entire 
structure at once.  (“goodness function”)

G(y) = ✓

T
f(x, y) argmax

y
G(y)

• Is inference efficient?  Depends on the structure of f.

• How to learn?  If you know how to evaluate the argmax, 
you can use the structured perceptron algorithm.

• There are several different global structure prediction 
models out there.  Related: conditional random fields, 
where p(y|x) ∝ exp(goodness(y))

Prediction:
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f(x,y) is...

V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

Two simple feature templates

X

t

1{yt�1 = A, yt = B}
For every pair of tag 
types (A,B)
“Transition features”

X

t

1{yt = A, xt = w}
For every tag type A 
and word type w
“Observation features”

finna get good
V V Agold  y =
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✓

T
f(x, y)Goodness(y) =

If every element of f(x,y) is based on only a 
single tag, or neighboring tags, then the 
Viterbi algorithm can calculate argmaxy G(y).

ftrans:V,A(x, y) =
NX

t=2

1{yt�1 = V, yt = A}

Mathematical convention is 
numeric indexing, though 
sometimes convenient to 
implement as hash table.

finna get good
V V Agold  y =

f

obs:V,finna(x, y) =
NX

t=1

1{y
t

= V, x

t

= finna}
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• added after lecture: I did an example on the board 
to show that Viterbi can do it.  those feature counts 
decompose into local parts of the output structure.

9

finna get good
y1 y2 y3

G(y) = ✓
trans:y1,y2 + ✓

trans:y2,y3

+ ✓
obs:y1,finna + ✓

obs:y2,get + ✓
obs:y3,good

• each term involves two neighboring tags, or just one 
tag.  Therefore to maximize G wrt y, we can use the 
NK^2 version of Viterbi we have done before.
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pred  y* = N V A

f(x, y)
V,V: 1
V,A: 1
V,finna: 1
V,get: 1
A,good: 1

f(x, y*)
N,V: 1
V,A: 1
N,finna: 1
V,get: 1
A,good: 1

f(x,y) - f(x, y*)

V,V: +1
N,V: -1
V,finna: +1
N,finna: -1

finna get good
V V Agold  y =

Learning idea:  want gold 
y to have high scores.
Update weights so y 
would have a higher 
score, and y* would be 
lower, next time.

Perceptron update rule:

✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]

Learning rate (hyperparam)
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f(x, y⇤)

✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]

The update vector:

+1 -1⌘( )
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Structured Perceptron

• Initialize theta=0

• For each example (x,y) in dataset, iterating many 
times through the dataset:

• Predict y* = argmaxy theta'f(x,y)

• (If y* = y, no update.)

• Calculate feature differences and update theta.
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✓ := ✓ + ⌘[f(x, y)� f(x, y⇤)]
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Averaged perceptron

• Perceptron is error-driven: update theta when there are 
mistakes.

• If the learning algorithm never gets 100% accuracy on 
the training set, it never converges. (The perceptron 
doesn’t care about the magnitude of its mistakes!  Unlike 
log-linear models.)

• One popular solution: averaging.  Average all seen values 
of theta into a final solution.

13

✓̄ =
1

n

X

t

✓(t)

• t indexes every example.  (If you pass through the dataset 5 
times, you have 5*(num train examples) timesteps.)

• The above is inefficient, but there’s a trick to make it much 
faster in practice.
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• Added after lecture, will review on Thursday:

• The three main structpred models are: (1) struct perceptron, (2) crf’s, (3) structsvm’s.  All 
of them work the same at test time (decoding via the viterbi algorithm, by maximizing a 
linear goodness score).  Only at training time are they different.

• Averaged perceptron is probably the simplest to implement and use.  Lots of 
practitioners in NLP who don’t care about fancy machine learning often use it.  I actually 
like CRF’s myself because of they have a probabilistic interpretation, but that doesn’t 
always matter.  Training CRF’s is slightly more complicated than struct perceptrons (not 
that much more complicated, but like a lecture’s worth of material), so I figured we could 
skip it in this class.

• Instead of averaging, you can also do early stopping: keep a development set and evaluate 
accuracy on it every iteration through the data.  Choose the theta that did best.  I don’t 
know which method is better (different researchers may prefer different methods).  
Averaging has the advantage that there aren’t really any hyperparameters to tune (well, 
the learning rate to a certain extent).

• Why does averaging work?  Theta is bouncing a lot around the space, because the 
perceptron doesn’t know how to prefer solutions according to the magnitude of the 
errors it makes.  The value of theta will be overfitted towards doing well on the most 
recent examples it’s seen.  If you average, you average away some of the noise.  Averaging 
is used in other areas of machine learning too.  It’s a form of regularization.

• Perceptron learning is actually a form of gradient descent.  It’s not on the logistic 
regression log-likelihood, but instead the gradients of a different function (the “1-0” loss).

• The Collins 2002 paper that introduced the structured perceptron is still great to read for more 
details: http://www.cs.columbia.edu/~mcollins/papers/tagperc.pdf

• More on the classification perceptron: see Hal Daume’s book chapter draft, 
http://ciml.info/dl/v0_9/ciml-v0_9-ch03.pdf14
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Recap

• Discriminative sequence models give scoring for 
output structures.

• MEMMs combine Markovian hidden structure, 
plus features from words.

• Global structure prediction models allow any 
scoring of the hidden structure.  The structured 
perceptron is a simple and effective learning 
algorithm for them.
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