From J\&M chapter 7 -- Jason Eisner's ice cream / weather HMM example.

Model

(Associate
Professor, John Hopkins University)

Figure 7.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the observations) to the weather (H or C, the hidden variables).

Viterbi algorithm

Figure 7.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events 313 . Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $v_{t}(j)$ for two states at two time steps. The computation in each cell follows Eq. 7.19: $v_{t}(j)=\max _{1 \leq i \leq N-1} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$. The resulting probability expressed in each cell is Eq. 7.18: $v_{t}(j)=P\left(q_{0}, q_{1}, \ldots, q_{t-1}, o_{1}, o_{2}, \ldots, o_{t}, q_{t}=j \mid \lambda\right)$.

Declaratively:

$$
V_{t}[k]=\max _{y_{1} \ldots y_{t-1}} P\left(y_{t}=k, \quad y_{1} . . y_{t-1}, w_{1} . . w_{t}\right)
$$

Algorithm, for each $t=1 . . N$,

$$
V_{t}[k]:=\max _{j=1 . . K}\left(V_{t-1}[j] P_{\text {trans }}(j \rightarrow k) P_{e m i t}\left(w_{t} \mid k\right)\right)
$$

Forward algorithm

Figure 7.7 The forward trellis for computing the total observation likelihood for the ice-cream events 31 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $\alpha_{t}(j)$ for two states at two time steps. The computation in each cell follows Eq. 7.14: $\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$. The resulting probability expressed in each cell is Eq. 7.13: $\alpha_{t}(j)=P\left(o_{1}, o_{2} \ldots o_{t}, q_{t}=j \mid \lambda\right)$.

Forward

Declaratively:

$$
\alpha_{t}[k]=\sum_{y_{1} \ldots y_{t}} P\left(y_{t}=k, w_{1} . . w_{t}, y_{1} . . y_{t-1}\right)
$$

Algorithm, for each $t=1 . . \mathrm{N}$,

$$
\alpha_{t}[k]:=\sum_{j=1 . . K}\left(\alpha_{t-1}[j] P_{\text {trans }}(j \rightarrow k) P_{\text {emit }}\left(w_{t} \mid k\right)\right)
$$

