
1

Lecture 10
Morphology and Finite State Transducers

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor (http://brenocon.com)

Thursday, October 2, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

• PS2 out tonight: due next Friday at midnight

• David will post OH for early next week

• I might have to change mine (next Thurs)

2

Thursday, October 2, 14

Word-internal structure

• What’s inside a word?

• walk, walked, walks: Our models think these are
different. Should they be?

• Motivations: less sparsity, deeper understanding

• Orthography: spelling conventions

• “blacke as the night” vs “black as the night”
Not really linguistically meaningful

• yesss vs yesssssssss
(Linguistically meaningful?...)

• Morphology: linguistically productive

• Rule-based approaches are very common here

3

Thursday, October 2, 14

Morphology: Phenomena

• Inflection

• Derivation

• Compounding

• Cliticization

4

Thursday, October 2, 14

• Inflectional morphology: modify root to a word
of the same class, due to grammatical
constraints like agreement

• e.g. regular verbs. (Exceptions?)

5

DR
AF
T

Section 3.1. Survey of (Mostly) English Morphology 5

While the regular plural is spelled -s after most nouns, it is spelled -es after words
ending in -s (ibis/ibises), -z (waltz/waltzes), -sh (thrush/thrushes), -ch (finch/finches),
and sometimes -x (box/boxes). Nouns ending in -y preceded by a consonant change the
-y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe + -s for regular singular nouns
(llama’s) and plural nouns not ending in -s (children’s) and often by a lone apostro-
phe after regular plural nouns (llamas’) and some names ending in -s or -z (Euripides’
comedies).

English verbal inflection is more complicated than nominal inflection. First, En-
glish has three kinds of verbs; main verbs, (eat, sleep, impeach), modal verbs (can,
will, should), and primary verbs (be, have, do) (using the terms of Quirk et al., 1985).
In this chapter we will mostly be concerned with the main and primary verbs, because
it is these that have inflectional endings. Of these verbs a large class are regular, that isREGULAR

to say all verbs of this class have the same endings marking the same functions. These
regular verbs (e.g. walk, or inspect) have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stem walk merge try map
-s form walks merges tries maps
-ing participle walking merging trying mapping
Past form or -ed participle walked merged tried mapped

These verbs are called regular because just by knowing the stem we can predict
the other forms by adding one of three predictable endings and making some regular
spelling changes (and as we will see in Ch. 7, regular pronunciation changes). These
regular verbs and forms are significant in the morphology of English first because they
cover a majority of the verbs, and second because the regular class is productive. As
discussed earlier, a productive class is one that automatically includes any new words
that enter the language. For example the recently-created verb fax (My mom faxed me
the note from cousin Everett) takes the regular endings -ed, -ing, -es. (Note that the -s
form is spelled faxes rather than faxs; we will discuss spelling rules below).

The irregular verbs are those that have some more or less idiosyncratic forms ofIRREGULAR VERBS

inflection. Irregular verbs in English often have five different forms, but can have as
many as eight (e.g., the verb be) or as few as three (e.g. cut or hit). While constituting
a much smaller class of verbs (Quirk et al. (1985) estimate there are only about 250
irregular verbs, not counting auxiliaries), this class includes most of the very frequent
verbs of the language.4 The table below shows some sample irregular forms. Note that
an irregular verb can inflect in the past form (also called the preterite) by changing itsPRETERITE

vowel (eat/ate), or its vowel and some consonants (catch/caught), or with no change at
all (cut/cut).

4 In general, the more frequent a word form, the more likely it is to have idiosyncratic properties; this is due
to a fact about language change; very frequent words tend to preserve their form even if other words around
them are changing so as to become more regular.

• English is relatively simple

Thursday, October 2, 14

• Derivational morphology: modify root to a
word of a different class

• derivational
derive -ation -al

• Can be tricky

• universe --> uni- verse ?

• universal --> uni- verse -al ???

6

Thursday, October 2, 14

• Compounding

• baseball desktop

• Cliticization

7

DR
AF
T

Section 3.1. Survey of (Mostly) English Morphology 7

3.1.2 Derivational Morphology
While English inflection is relatively simple compared to other languages, derivation
in English is quite complex. Recall that derivation is the combination of a word stem
with a grammatical morpheme, usually resulting in a word of a different class, often
with a meaning hard to predict exactly.

A very common kind of derivation in English is the formation of new nouns, of-
ten from verbs or adjectives. This process is called nominalization. For example,NOMINALIZATION

the suffix -ation produces nouns from verbs ending often in the suffix -ize (computer-
ize → computerization). Here are examples of some particularly productive English
nominalizing suffixes.

Suffix Base Verb/Adjective Derived Noun
-ation computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here are examples of a few
suffixes deriving adjectives from nouns or verbs.

Suffix Base Noun/Verb Derived Adjective
-al computation (N) computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of reasons.
One is that it is generally less productive; even a nominalizing suffix like -ation, which
can be added to almost any verb ending in -ize, cannot be added to absolutely ev-
ery verb. Thus we can’t say *eatation or *spellation (we use an asterisk (*) to mark
“non-examples” of English). Another is that there are subtle and complex meaning
differences among nominalizing suffixes. For example sincerity has a subtle difference
in meaning from sincereness.

3.1.3 Cliticization
Recall that a clitic is a unit whose status lies in between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and unaccented (we
will talk more about phonology in Ch. 8). Their syntactic behavior is more like words,
often acting as pronouns, articles, conjunctions, or verbs. Clitics preceding a word are
called proclitics, while those following are enclitics.PROCLITICS

ENCLITICS English clitics include these auxiliary verbal forms:

Full Form Clitic Full Form Clitic
am ’m have ’ve
are ’re has ’s
is ’s had ’d
will ’ll would ’d

Thursday, October 2, 14

Full morph. parsing

• Need

• 1. Lexicon of stems and affixes (maybe guess stems...)

• 2. Morphotactics: morpheme ordering model

• 3. Orthographic rules: spelling changes upon combination
(city + -s --> citys -> cities)

8

DR
AF
T

Section 3.2. Finite-State Morphological Parsing 9

falls into one class. Many languages (for example Romance languages like French,
Spanish, or Italian) have 2 genders, which are referred to as masculine and feminine.
Other languages (like most Germanic and Slavic languages) have three (masculine,
feminine, neuter). Some languages, for example the Bantu languages of Africa, have
as many as 20 genders. When the number of classes is very large, we often refer to
them as noun classes instead of genders.NOUN CLASSES

Gender is sometimes marked explicitly on a noun; for example Spanish masculine
words often end in -o and feminine words in -a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We will see an example of this in Fig. 3.2.

3.2 FINITE-STATE MORPHOLOGICAL PARSING

Let’s now proceed to the problem of parsing morphology. Our goal will be to take
input forms like those in the first and third columns of Fig. 3.2, produce output forms
like those in the second and fourth column.

English Spanish
Input Morphologically Input Morphologically Gloss

Parsed Output Parsed Output
cats cat +N +PL pavos pavo +N +Masc +Pl ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +Pl bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +Pl canto cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past

Figure 3.2 Output of a morphological parse for some English and Spanish words. Span-
ish output modified from the Xerox XRCE finite-state language tools.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. ForFEATURES

example the feature +N means that the word is a noun; +Sg means it is singular, +Pl
that it is plural. Morphological features will be referred to again in Ch. 5 and in more
detail in Ch. 16; for now, consider +Sg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example the nouns lugar and
pavo are marked +Masc (masculine). Because Spanish nouns agree in gender with ad-
jectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (like caught, goose, canto, or vino) will be am-
biguous between different morphological parses. For now, we will consider the goal of
morphological parsing merely to list all possible parses. We will return to the task of
disambiguating among morphological parses in Ch. 5.

Thursday, October 2, 14

Lexicons
• Noun inflection: need three word lists for nouns

• regular nouns

• irregular plural nouns

• irregular singular nouns

• FSA represents all inflected nouns: don’t have to
store plural forms.

• Abbreviated form below (What does the full FSA
look like?)

9

DR
AF
T

10 Chapter 3. Words & Transducers

In order to build a morphological parser, we’ll need at least the following:
1. lexicon: the list of stems and affixes, together with basic information about themLEXICON

(whether a stem is a Noun stem or a Verb stem, etc.).
2. morphotactics: the model of morpheme ordering that explains which classes ofMORPHOTACTICS

morphemes can follow other classes of morphemes inside a word. For example,
the fact that the English plural morpheme follows the noun rather than preceding
it is a morphotactic fact.

3. orthographic rules: these spelling rules are used to model the changes that
occur in a word, usually when two morphemes combine (e.g., the y→ ie spelling
rule discussed above that changes city + -s to cities rather than citys).

The next section will discuss how to represent a simple version of the lexicon just
for the sub-problem of morphological recognition, including how to use FSAs to model
morphotactic knowledge.

In following sections we will then introduce the finite-state transducer (FST) as a
way of modeling morphological features in the lexicon, and addressing morphological
parsing. Finally, we show how to use FSTs to model orthographic rules.

3.3 BUILDING A FINITE-STATE LEXICON

A lexicon is a repository for words. The simplest possible lexicon would consist of
an explicit list of every word of the language (every word, i.e., including abbreviations
(“AAA”) and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, . . .

Since it will often be inconvenient or impossible, for the various reasons we dis-
cussed above, to list every word in the language, computational lexicons are usually
structured with a list of each of the stems and affixes of the language together with a
representation of the morphotactics that tells us how they can fit together. There are
many ways to model morphotactics; one of the most common is the finite-state au-
tomaton. A very simple finite-state model for English nominal inflection might look
like Fig. 3.3.

q0 q1 q2

reg-noun plural -s

irreg-sg-noun

irreg-pl-noun

Figure 3.3 A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3 assumes that the lexicon includes regular nouns (reg-noun)
that take the regular -s plural (e.g., cat, dog, fox, aardvark). These are the vast majority
of English nouns since for now we will ignore the fact that the plural of words like fox

Thursday, October 2, 14

Derivaional morph. example
• Derivational data we want to model:

adjectives become opposites, comparatives, adverbs

10

DR
AF
T

Section 3.3. Building a Finite-State Lexicon 11

have an inserted e: foxes. The lexicon also includes irregular noun forms that don’t
take -s, both singular irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural
fox geese goose -s
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look like Fig. 3.4.

q0 q1 q3
reg-verb-stem

past (-ed)

irreg-verb-stem

reg-verb-stem

q2

irreg-past-verb-form

past participle (-ed)

present participle (-ing) 3sg (-s)

Figure 3.4 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, and irreg-past-
verb-form), plus four more affix classes (-ed past, -ed participle, -ing participle, and
third singular -s):

reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg
stem stem verb
walk cut caught -ed -ed -ing -s
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Ch. 12 (Sproat, 1993).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really
clear, clearer, clearest, clearly, unclear, unclearly

Thursday, October 2, 14

Derivaional morph. example
• Derivational data we want to model:

adjectives become opposites, comparatives, adverbs

10

DR
AF
T

Section 3.3. Building a Finite-State Lexicon 11

have an inserted e: foxes. The lexicon also includes irregular noun forms that don’t
take -s, both singular irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural
fox geese goose -s
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look like Fig. 3.4.

q0 q1 q3
reg-verb-stem

past (-ed)

irreg-verb-stem

reg-verb-stem

q2

irreg-past-verb-form

past participle (-ed)

present participle (-ing) 3sg (-s)

Figure 3.4 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, and irreg-past-
verb-form), plus four more affix classes (-ed past, -ed participle, -ing participle, and
third singular -s):

reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg
stem stem verb
walk cut caught -ed -ed -ing -s
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Ch. 12 (Sproat, 1993).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really
clear, clearer, clearest, clearly, unclear, unclearly

DR
AF
T

12 Chapter 3. Words & Transducers

An initial hypothesis might be that adjectives can have an optional prefix (un-), an
obligatory root (big, cool, etc.) and an optional suffix (-er, -est, or -ly). This might
suggest the the FSA in Fig. 3.5.

q0 q1 q2
un- adj-root

∋

q3

-er -est -ly

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth’s Pro-
posal #1.

Alas, while this FSA will recognize all the adjectives in the table above, it will also
recognize ungrammatical forms like unbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thus adj-root1 would include
adjectives that can occur with un- and -ly (clear, happy, and real) while adj-root2 will
include adjectives that can’t (big, small), and so on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Figure 3.6 another fragment of an FSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, such as the well known
generalization that any verb ending in -ize can be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a word fossilize, we can predict
the word fossilization by following states q0, q1, and q2. Similarly, adjectives ending
in -al or -able at q5 (equal, formal, realizable) can take the suffix -ity, or sometimes
the suffix -ness to state q6 (naturalness, casualness). We leave it as an exercise for the
reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints, and also to give examples of some of the various noun and verb classes.

q0 q1 q2

nouni -ize/V
q3

-ation/N
q4

adj-al

q5
q6

-er/N-able/A

-ness/N

-ity/N
adj-al

q7
q8

q9verbj
-ive/A

adj-ous
-ly/Adv

-ness/N

q10 q11

-ly/Adv
-ful/A-ative/A

verbk

nounl

Figure 3.6 An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem of morphological recognition;
that is, of determining whether an input string of letters makes up a legitimate English
word or not. We do this by taking the morphotactic FSAs, and plugging in each “sub-

• Task: recognition. Proposed model

• Any false positives? (Compare: Child language learning)

Thursday, October 2, 14

11

DR
AF
T

12 Chapter 3. Words & Transducers

An initial hypothesis might be that adjectives can have an optional prefix (un-), an
obligatory root (big, cool, etc.) and an optional suffix (-er, -est, or -ly). This might
suggest the the FSA in Fig. 3.5.

q0 q1 q2
un- adj-root

∋

q3

-er -est -ly

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth’s Pro-
posal #1.

Alas, while this FSA will recognize all the adjectives in the table above, it will also
recognize ungrammatical forms like unbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thus adj-root1 would include
adjectives that can occur with un- and -ly (clear, happy, and real) while adj-root2 will
include adjectives that can’t (big, small), and so on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Figure 3.6 another fragment of an FSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, such as the well known
generalization that any verb ending in -ize can be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a word fossilize, we can predict
the word fossilization by following states q0, q1, and q2. Similarly, adjectives ending
in -al or -able at q5 (equal, formal, realizable) can take the suffix -ity, or sometimes
the suffix -ness to state q6 (naturalness, casualness). We leave it as an exercise for the
reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints, and also to give examples of some of the various noun and verb classes.

q0 q1 q2

nouni -ize/V
q3

-ation/N
q4

adj-al

q5
q6

-er/N-able/A

-ness/N

-ity/N
adj-al

q7
q8

q9verbj
-ive/A

adj-ous
-ly/Adv

-ness/N

q10 q11

-ly/Adv
-ful/A-ative/A

verbk

nounl

Figure 3.6 An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem of morphological recognition;
that is, of determining whether an input string of letters makes up a legitimate English
word or not. We do this by taking the morphotactic FSAs, and plugging in each “sub-

Thursday, October 2, 14

Recognition vs Parsing

• Morphological recognition

• is_pasttense_verb(loved) --> TRUE

• Finite State Automata can do this

• Morphological parsing: what is its breakdown?

• parse(loved) --> take/VERB -n/PAST-TENSE

• Finite State Transducers can do this

12

Thursday, October 2, 14

13

Finite State Transducers
• FSAutomata

• An FSA represents a set of strings. e.g.
 {walk, walks, walked, love loves, loved}

• Regular language.

• A recognizer function.
recognize(str) -> true or false

• FSTransducers

• An FST represents a set of pairs of strings (think of as
input,output pairs)
 { (walk, walk+V+PL), (walk, walk+N+SG), (walked, walk+V+PAST) ...}

• Regular relation. (Not a function!)

• A transducer function: maps input to zero or more outputs.
 transduce(walk) --> {walk+V+PL, walk+N+SG}
 Can return multiple answers if ambiguity: e.g. if you don’t have
POS-tagged input, “walk” could be the verb “They walk to the
store” versus the noun “I took a walk”.

• Generic inversion and composition operations.

Thursday, October 2, 14

Finite State Transducers

• FSAutomata have input labels.

• One input tape

• FSTransducers have input:output pairs on labels.

• Two tapes: input and output.

14

DR
AF
T

14 Chapter 3. Words & Transducers

q0

aa:b

q1

b:
b:a
b:b
a:ba

∋

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

• FST as generator: a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another string
• FST as set relater: a machine that computes relations between sets.
All of these have applications in speech and language processing. For morphologi-

cal parsing (and for many other NLP applications), we will apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with 7 pa-
rameters:

Q a finite set of N states q0,q1, . . . ,qN−1
Σ a finite set corresponding to the input alphabet
Δ a finite set corresponding to the output alphabet
q0 ∈ Q the start state
F ⊆ Q the set of final states
δ(q,w) the transition function or transition matrix between states; Given a

state q ∈ Q and a string w ∈ Σ∗, δ(q,w) returns a set of new states
Q′ ∈ Q. δ is thus a function from Q×Σ∗ to 2Q (because there are
2Q possible subsets of Q). δ returns a set of states rather than a
single state because a given input may be ambiguous in which state
it maps to.

σ(q,w) the output function giving the set of possible output strings for each
state and input. Given a state q ∈ Q and a string w ∈ Σ∗, σ(q,w)
gives a set of output strings, each a string o ∈ Δ∗. σ is thus a func-
tion from Q×Σ∗ to 2Δ∗

Where FSAs are isomorphic to regular languages, FSTs are isomorphic to regu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of theREGULAR

RELATIONS

regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed
under difference, complementation and intersection (although some useful subclasses
of FSTs are closed under these operations; in general FSTs that are not augmented with
the ε are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremely useful:

Thursday, October 2, 14

Finite State Transducers
• FSAutomata have input labels.

• FSTransducers have input:output pairs on labels.

15DR
AF
T

14 Chapter 3. Words & Transducers

q0

aa:b

q1

b:
b:a
b:b
a:ba

∋

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

• FST as generator: a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another string
• FST as set relater: a machine that computes relations between sets.
All of these have applications in speech and language processing. For morphologi-

cal parsing (and for many other NLP applications), we will apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with 7 pa-
rameters:

Q a finite set of N states q0,q1, . . . ,qN−1
Σ a finite set corresponding to the input alphabet
Δ a finite set corresponding to the output alphabet
q0 ∈ Q the start state
F ⊆ Q the set of final states
δ(q,w) the transition function or transition matrix between states; Given a

state q ∈ Q and a string w ∈ Σ∗, δ(q,w) returns a set of new states
Q′ ∈ Q. δ is thus a function from Q×Σ∗ to 2Q (because there are
2Q possible subsets of Q). δ returns a set of states rather than a
single state because a given input may be ambiguous in which state
it maps to.

σ(q,w) the output function giving the set of possible output strings for each
state and input. Given a state q ∈ Q and a string w ∈ Σ∗, σ(q,w)
gives a set of output strings, each a string o ∈ Δ∗. σ is thus a func-
tion from Q×Σ∗ to 2Δ∗

Where FSAs are isomorphic to regular languages, FSTs are isomorphic to regu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of theREGULAR

RELATIONS

regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed
under difference, complementation and intersection (although some useful subclasses
of FSTs are closed under these operations; in general FSTs that are not augmented with
the ε are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremely useful:

New

New

Thursday, October 2, 14

Finite State Transducers
• FSAutomata have input labels.

• FSTransducers have input:output pairs on labels.

15DR
AF
T

14 Chapter 3. Words & Transducers

q0

aa:b

q1

b:
b:a
b:b
a:ba

∋

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

• FST as generator: a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another string
• FST as set relater: a machine that computes relations between sets.
All of these have applications in speech and language processing. For morphologi-

cal parsing (and for many other NLP applications), we will apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with 7 pa-
rameters:

Q a finite set of N states q0,q1, . . . ,qN−1
Σ a finite set corresponding to the input alphabet
Δ a finite set corresponding to the output alphabet
q0 ∈ Q the start state
F ⊆ Q the set of final states
δ(q,w) the transition function or transition matrix between states; Given a

state q ∈ Q and a string w ∈ Σ∗, δ(q,w) returns a set of new states
Q′ ∈ Q. δ is thus a function from Q×Σ∗ to 2Q (because there are
2Q possible subsets of Q). δ returns a set of states rather than a
single state because a given input may be ambiguous in which state
it maps to.

σ(q,w) the output function giving the set of possible output strings for each
state and input. Given a state q ∈ Q and a string w ∈ Σ∗, σ(q,w)
gives a set of output strings, each a string o ∈ Δ∗. σ is thus a func-
tion from Q×Σ∗ to 2Δ∗

Where FSAs are isomorphic to regular languages, FSTs are isomorphic to regu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of theREGULAR

RELATIONS

regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed
under difference, complementation and intersection (although some useful subclasses
of FSTs are closed under these operations; in general FSTs that are not augmented with
the ε are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremely useful:

New

New

Thursday, October 2, 14

Inversion

16

DR
AF
T

Section 3.4. Finite-State Transducers 15

• inversion: The inversion of a transducer T (T−1) simply switches the input andINVERSION

output labels. Thus if T maps from the input alphabet I to the output alphabetO,
T−1 maps from O to I.

• composition: If T1 is a transducer from I1 to O1 and T2 a transducer from O1 toCOMPOSITION

O2, then T1 ◦T2 maps from I1 to O2.
Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-

as-generator.
Composition is useful because it allows us to take two transducers that run in series

and replace them with one more complex transducer. Composition works as in algebra;
applying T1 ◦T2 to an input sequence S is identical to applying T1 to S and then T2 to
the result; thus T1 ◦T2(S) = T2(T1(S)).

Fig. 3.9, for example, shows the composition of [a:b]+with [b:c]+ to produce
[a:c]+.

q0 q1

a:c
a:c

q0 q1

b:c
b:c

q0 q1

a:b
a:b

=

Figure 3.9 The composition of [a:b]+ with [b:c]+ to produce [a:c]+.

The projection of an FST is the FSA that is produced by extracting only one sidePROJECTION

of the relation. We can refer to the projection to the left or upper side of the relation as
the upper or first projection and the projection to the lower or right side of the relation
as the lower or second projection.

3.4.1 Sequential Transducers and Determinism
Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus using general FSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTs quite slow in the general
case. This suggests that it would nice to have an algorithm to convert a nondeterministic
FST to a deterministic one. But while every non-deterministic FSA is equivalent to
some deterministic FSA, not all finite-state transducers can be determinized.
Sequential transducers, by contrast, are a subtype of transducers that are deter-SEQUENTIAL

TRANSDUCERS

ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabet Σ can label at most one transition out of that state. Fig. 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state are deterministic based on the
state and the input symbol. Sequential transducers can have epsilon symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies the δ and σ

 T = { (a,a1), (a, a2), (b, b1), (c, c1), (c, a) }
T-1 = { (a1,a), (a2, a), (b1, b), (c1, c), (a, c) }

Thursday, October 2, 14

Composition

• As transducer functions,
(T1 o T2)(x) = T1(T2(x))

17

DR
AF
T

Section 3.4. Finite-State Transducers 15

• inversion: The inversion of a transducer T (T−1) simply switches the input andINVERSION

output labels. Thus if T maps from the input alphabet I to the output alphabetO,
T−1 maps from O to I.

• composition: If T1 is a transducer from I1 to O1 and T2 a transducer from O1 toCOMPOSITION

O2, then T1 ◦T2 maps from I1 to O2.
Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-

as-generator.
Composition is useful because it allows us to take two transducers that run in series

and replace them with one more complex transducer. Composition works as in algebra;
applying T1 ◦T2 to an input sequence S is identical to applying T1 to S and then T2 to
the result; thus T1 ◦T2(S) = T2(T1(S)).

Fig. 3.9, for example, shows the composition of [a:b]+with [b:c]+ to produce
[a:c]+.

q0 q1

a:c
a:c

q0 q1

b:c
b:c

q0 q1

a:b
a:b

=

Figure 3.9 The composition of [a:b]+ with [b:c]+ to produce [a:c]+.

The projection of an FST is the FSA that is produced by extracting only one sidePROJECTION

of the relation. We can refer to the projection to the left or upper side of the relation as
the upper or first projection and the projection to the lower or right side of the relation
as the lower or second projection.

3.4.1 Sequential Transducers and Determinism
Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus using general FSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTs quite slow in the general
case. This suggests that it would nice to have an algorithm to convert a nondeterministic
FST to a deterministic one. But while every non-deterministic FSA is equivalent to
some deterministic FSA, not all finite-state transducers can be determinized.
Sequential transducers, by contrast, are a subtype of transducers that are deter-SEQUENTIAL

TRANSDUCERS

ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabet Σ can label at most one transition out of that state. Fig. 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state are deterministic based on the
state and the input symbol. Sequential transducers can have epsilon symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies the δ and σ

DR
AF
T

Section 3.4. Finite-State Transducers 15

• inversion: The inversion of a transducer T (T−1) simply switches the input andINVERSION

output labels. Thus if T maps from the input alphabet I to the output alphabetO,
T−1 maps from O to I.

• composition: If T1 is a transducer from I1 to O1 and T2 a transducer from O1 toCOMPOSITION

O2, then T1 ◦T2 maps from I1 to O2.
Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-

as-generator.
Composition is useful because it allows us to take two transducers that run in series

and replace them with one more complex transducer. Composition works as in algebra;
applying T1 ◦T2 to an input sequence S is identical to applying T1 to S and then T2 to
the result; thus T1 ◦T2(S) = T2(T1(S)).

Fig. 3.9, for example, shows the composition of [a:b]+with [b:c]+ to produce
[a:c]+.

q0 q1

a:c
a:c

q0 q1

b:c
b:c

q0 q1

a:b
a:b

=

Figure 3.9 The composition of [a:b]+ with [b:c]+ to produce [a:c]+.

The projection of an FST is the FSA that is produced by extracting only one sidePROJECTION

of the relation. We can refer to the projection to the left or upper side of the relation as
the upper or first projection and the projection to the lower or right side of the relation
as the lower or second projection.

3.4.1 Sequential Transducers and Determinism
Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus using general FSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTs quite slow in the general
case. This suggests that it would nice to have an algorithm to convert a nondeterministic
FST to a deterministic one. But while every non-deterministic FSA is equivalent to
some deterministic FSA, not all finite-state transducers can be determinized.
Sequential transducers, by contrast, are a subtype of transducers that are deter-SEQUENTIAL

TRANSDUCERS

ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabet Σ can label at most one transition out of that state. Fig. 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state are deterministic based on the
state and the input symbol. Sequential transducers can have epsilon symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies the δ and σ

Thursday, October 2, 14

Generic FST operations

• There exist generic algorithms for inversion and
composition (and minimization...)

• Chain together many transducers

• e.g. OpenFST open-source library

18

Thursday, October 2, 14

FSTs for morph parsing

19

DR
AF
T

Section 3.2. Finite-State Morphological Parsing 9

falls into one class. Many languages (for example Romance languages like French,
Spanish, or Italian) have 2 genders, which are referred to as masculine and feminine.
Other languages (like most Germanic and Slavic languages) have three (masculine,
feminine, neuter). Some languages, for example the Bantu languages of Africa, have
as many as 20 genders. When the number of classes is very large, we often refer to
them as noun classes instead of genders.NOUN CLASSES

Gender is sometimes marked explicitly on a noun; for example Spanish masculine
words often end in -o and feminine words in -a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We will see an example of this in Fig. 3.2.

3.2 FINITE-STATE MORPHOLOGICAL PARSING

Let’s now proceed to the problem of parsing morphology. Our goal will be to take
input forms like those in the first and third columns of Fig. 3.2, produce output forms
like those in the second and fourth column.

English Spanish
Input Morphologically Input Morphologically Gloss

Parsed Output Parsed Output
cats cat +N +PL pavos pavo +N +Masc +Pl ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +Pl bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +Pl canto cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past

Figure 3.2 Output of a morphological parse for some English and Spanish words. Span-
ish output modified from the Xerox XRCE finite-state language tools.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. ForFEATURES

example the feature +N means that the word is a noun; +Sg means it is singular, +Pl
that it is plural. Morphological features will be referred to again in Ch. 5 and in more
detail in Ch. 16; for now, consider +Sg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example the nouns lugar and
pavo are marked +Masc (masculine). Because Spanish nouns agree in gender with ad-
jectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (like caught, goose, canto, or vino) will be am-
biguous between different morphological parses. For now, we will consider the goal of
morphological parsing merely to list all possible parses. We will return to the task of
disambiguating among morphological parses in Ch. 5.

Thursday, October 2, 14

FSTs for morph parsing

20
DR
AF
T

Section 3.5. FSTs for Morphological Parsing 17

3.5 FSTS FOR MORPHOLOGICAL PARSING

Let’s now turn to the task of morphological parsing. Given the input cats, for instance,
we’d like to output cat +N +Pl, telling us that cat is a plural noun. Given the Spanish
input bebo (‘I drink’), we’d like to output beber +V +PInd +1P +Sg telling us that
bebo is the present indicative first person singular form of the Spanish verb beber, ‘to
drink’.

In the finite-state morphology paradigm that we will use, we represent a word as
a correspondence between a lexical level, which represents a concatenation of mor-
phemes making up a word, and the surface level, which represents the concatenationSURFACE

of letters which make up the actual spelling of the word. Fig. 3.12 shows these two
levels for (English) cats.

c +N +Pl

c a t s

Lexical

Surface

Figure 3.12 Schematic examples of the lexical and surface tapes; the actual transducers
will involve intermediate tapes as well.

For finite-state morphology it’s convenient to view an FST as having two tapes. The
upper or lexical tape, is composed from characters from one alphabet Σ. The lowerLEXICAL TAPE

or surface tape, is composed of characters from another alphabet Δ. In the two-level
morphology of Koskenniemi (1983), we allow each arc only to have a single symbol
from each alphabet. We can then combine the two symbol alphabets Σ and Δ to create
a new alphabet, Σ′, which makes the relationship to FSAs quite clear. Σ′ is a finite
alphabet of complex symbols. Each complex symbol is composed of an input-output
pair i : o; one symbol i from the input alphabet Σ, and one symbol o from an output
alphabet Δ, thus Σ′ ⊆ Σ×Δ. Σ and Δmay each also include the epsilon symbol ε. Thus
where an FSA accepts a language stated over a finite alphabet of single symbols, such
as the alphabet of our sheep language:

Σ= {b,a, !}(3.2)

an FST defined this way accepts a language stated over pairs of symbols, as in:

Σ′ = {a : a, b : b, ! : !, a : !, a : ε, ε : !}(3.3)

In two-level morphology, the pairs of symbols in Σ′ are also called feasible pairs. ThusFEASIBLE PAIRS

each feasible pair symbol a : b in the transducer alphabet Σ′ expresses how the symbol
a from one tape is mapped to the symbol b on the other tape. For example a : ε means
that an a on the upper tape will correspond to nothing on the lower tape. Just as for
an FSA, we can write regular expressions in the complex alphabet Σ′. Since it’s most
common for symbols to map to themselves, in two-level morphology we call pairs like
a : a default pairs, and just refer to them by the single letter a.DEFAULT PAIRS

Thursday, October 2, 14

21

DR
AF
T

18 Chapter 3. Words & Transducers

We are now ready to build an FST morphological parser out of our earlier morpho-
tactic FSAs and lexica by adding an extra “lexical” tape and the appropriate morpho-
logical features. Fig. 3.13 shows an augmentation of Fig. 3.3 with the nominal mor-
phological features (+Sg and +Pl) that correspond to each morpheme. The symbol
ˆ indicates a morpheme boundary, while the symbol # indicates a word boundary.MORPHEME

BOUNDARY

#

WORD BOUNDARY

The morphological features map to the empty string ε or the boundary symbols since
there is no segment corresponding to them on the output tape.

q0

q1

q

reg-noun

irreg-pl-noun

irreg-sg-noun q2

q3

q4

q5

q6

+N

+N

+N

+Pl

+Pl
#

#

#
^s#+Sg

+Sg

∋

∋

∋

Figure 3.13 A schematic transducer for English nominal number inflection Tnum. The
symbols above each arc represent elements of the morphological parse in the lexical tape;
the symbols below each arc represent the surface tape (or the intermediate tape, to be
described later), using the morpheme-boundary symbol ˆ and word-boundary marker #.
The labels on the arcs leaving q0 are schematic, and need to be expanded by individual
words in the lexicon.

In order to use Fig. 3.13 as a morphological noun parser, it needs to be expanded
with all the individual regular and irregular noun stems, replacing the labels reg-noun
etc. In order to do this we need to update the lexicon for this transducer, so that irreg-
ular plurals like geese will parse into the correct stem goose +N +Pl. We do this
by allowing the lexicon to also have two levels. Since surface geese maps to lexical
goose, the new lexical entry will be “g:g o:e o:e s:s e:e”. Regular forms
are simpler; the two-level entry for fox will now be “f:f o:o x:x”, but by relying
on the orthographic convention that f stands for f:f and so on, we can simply refer to
it as fox and the form for geese as “g o:e o:e s e”. Thus the lexicon will look
only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat sheep sheep
aardvark m o:i u:ε s:c e mouse

The resulting transducer, shown in Fig. 3.14, will map plural nouns into the stem
plus the morphological marker +Pl, and singular nouns into the stem plus the mor-
phological marker +Sg. Thus a surface cats will map to cat +N +Pl. This can be
viewed in feasible-pair format as follows:

DR
AF
T

18 Chapter 3. Words & Transducers

We are now ready to build an FST morphological parser out of our earlier morpho-
tactic FSAs and lexica by adding an extra “lexical” tape and the appropriate morpho-
logical features. Fig. 3.13 shows an augmentation of Fig. 3.3 with the nominal mor-
phological features (+Sg and +Pl) that correspond to each morpheme. The symbol
ˆ indicates a morpheme boundary, while the symbol # indicates a word boundary.MORPHEME

BOUNDARY

#

WORD BOUNDARY

The morphological features map to the empty string ε or the boundary symbols since
there is no segment corresponding to them on the output tape.

q0

q1

q

reg-noun

irreg-pl-noun

irreg-sg-noun q2

q3

q4

q5

q6

+N

+N

+N

+Pl

+Pl
#

#

#
^s#+Sg

+Sg

∋

∋

∋

Figure 3.13 A schematic transducer for English nominal number inflection Tnum. The
symbols above each arc represent elements of the morphological parse in the lexical tape;
the symbols below each arc represent the surface tape (or the intermediate tape, to be
described later), using the morpheme-boundary symbol ˆ and word-boundary marker #.
The labels on the arcs leaving q0 are schematic, and need to be expanded by individual
words in the lexicon.

In order to use Fig. 3.13 as a morphological noun parser, it needs to be expanded
with all the individual regular and irregular noun stems, replacing the labels reg-noun
etc. In order to do this we need to update the lexicon for this transducer, so that irreg-
ular plurals like geese will parse into the correct stem goose +N +Pl. We do this
by allowing the lexicon to also have two levels. Since surface geese maps to lexical
goose, the new lexical entry will be “g:g o:e o:e s:s e:e”. Regular forms
are simpler; the two-level entry for fox will now be “f:f o:o x:x”, but by relying
on the orthographic convention that f stands for f:f and so on, we can simply refer to
it as fox and the form for geese as “g o:e o:e s e”. Thus the lexicon will look
only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat sheep sheep
aardvark m o:i u:ε s:c e mouse

The resulting transducer, shown in Fig. 3.14, will map plural nouns into the stem
plus the morphological marker +Pl, and singular nouns into the stem plus the mor-
phological marker +Sg. Thus a surface cats will map to cat +N +Pl. This can be
viewed in feasible-pair format as follows:

DR
AF
T

Section 3.6. Transducers and Orthographic Rules 19

0

f

o

3 4

1 2

6

7

c

g

^s#

o

x

ta

o s e

o o s e

5 +N

∋

+N

∋

+N

∋

g

c

f

a

o x

e e s e

esoo

t

+Pl

+Sg

+Sg

+Pl
#

#

#

Figure 3.14 A fleshed-out English nominal inflection FST Tlex, expanded from Tnum
by replacing the three arcs with individual word stems (only a few sample word stems are
shown).

c:c a:a t:t +N:ε +Pl:ˆs#

Since the output symbols include the morpheme and word boundary markers ˆ and
#, the lower labels Fig. 3.14 do not correspond exactly to the surface level. Hence we
refer to tapes with these morpheme boundary markers in Fig. 3.15 as intermediate
tapes; the next section will show how the boundary marker is removed.

f o +N +Pl

f o #

Lexical

Intermediate

Figure 3.15 A schematic view of the lexical and intermediate tapes.

3.6 TRANSDUCERS AND ORTHOGRAPHIC RULES

The method described in the previous section will successfully recognize words like
aardvarks and mice. But just concatenating the morphemes won’t work for cases
where there is a spelling change; it would incorrectly reject an input like foxes and
accept an input like foxs. We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introducing spelling rules (or ortho-SPELLING RULES

graphic rules) This section introduces a number of notations for writing such rules
and shows how to implement the rules as transducers. In general, the ability to im-
plement rules as a transducer turns out to be useful throughout speech and language
processing. Here’s some spelling rules:

Compose

Thursday, October 2, 14

22

DR
AF
T

20 Chapter 3. Words & Transducers

Name Description of Rule Example
Consonant 1-letter consonant doubled before -ing/-ed beg/begging
doubling
E deletion Silent e dropped before -ing and -ed make/making
E insertion e added after -s,-z,-x,-ch, -sh before -s watch/watches
Y replacement -y changes to -ie before -s, -i before -ed try/tries
K insertion verbs ending with vowel + -c add -k panic/panicked

We can think of these spelling changes as taking as input a simple concatenation of
morphemes (the “intermediate output” of the lexical transducer in Fig. 3.14) and pro-
ducing as output a slightly-modified (correctly-spelled) concatenation of morphemes.
Fig. 3.16 shows in schematic form the three levels we are talking about: lexical, inter-
mediate, and surface. So for example we could write an E-insertion rule that performs
the mapping from the intermediate to surface levels shown in Fig. 3.16. Such a rule

f o +N +Pl

f o #Intermediate

f oSurface

Lexical

Figure 3.16 An example of the lexical, intermediate, and surface tapes. Between each
pair of tapes is a two-level transducer; the lexical transducer of Fig. 3.14 between the
lexical and intermediate levels, and the E-insertion spelling rule between the intermediate
and surface levels. The E-insertion spelling rule inserts an e on the surface tape when the
intermediate tape has a morpheme boundary ˆ followed by the morpheme -s.

might say something like “insert an e on the surface tape just when the lexical tape has
a morpheme ending in x (or z, etc) and the next morpheme is -s”. Here’s a formalization
of the rule:

ε→ e /







x
s
z







ˆ s#(3.4)

This is the rule notation of Chomsky and Halle (1968); a rule of the form a→
b /c d means “rewrite a as b when it occurs between c and d”. Since the symbol
ε means an empty transition, replacing it means inserting something. Recall that the
symbol ˆ indicates a morpheme boundary. These boundaries are deleted by including
the symbol ˆ:ε in the default pairs for the transducer; thus morpheme boundary markers
are deleted on the surface level by default. The # symbol is a special symbol that marks
a word boundary. Thus (3.4) means “insert an e after a morpheme-final x, s, or z, and
before the morpheme s”. Fig. 3.17 shows an automaton that corresponds to this rule.

The idea in building a transducer for a particular rule is to express only the con-
straints necessary for that rule, allowing any other string of symbols to pass through

Thursday, October 2, 14

Other applications of FSTs

• Spelling correction: make an FST that can
capture common mistakes

• Transpositions: teh -> the

• Speech recognition: phonemes, pronunciation
dictionaries, words...

• OpenFST library: originally developed for speech
applications

• Machine translation: Model 1 can be thought of
as an FST!

• Usually use weighted FSTs: probabilities of
spelling errors, word/phrase translations, etc.

23

Thursday, October 2, 14

Stemming: simple morph. parse

• Porter stemmer: cascade of rewrite rules.
Output of one stage is the input for the next

24

DR
AF
T

Section 3.9. Word and Sentence Tokenization 25

might not match the keyword marsupial, some IR systems first run a stemmer on the
query and document words. Morphological information in IR is thus only used to
determine that two words have the same stem; the suffixes are thrown away.

One of the most widely used such stemming algorithms is the simple and efficientSTEMMING

Porter (1980) algorithm, which is based on a series of simple cascaded rewrite rules.
Since cascaded rewrite rules are just the sort of thing that could be easily implemented
as an FST, we think of the Porter algorithm as a lexicon-free FST stemmer (this idea
will be developed further in the exercises (Exercise 3.6). The algorithm contains rules
like these:

ATIONAL→ ATE (e.g., relational→ relate)
ING→ ε if stem contains vowel (e.g., motoring→ motor)

See Porter (1980) or Martin Porter’s official homepage for the Porter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat improve the performance
of information retrieval, especially with smaller documents (the larger the document,
the higher the chance the keyword will occur in the exact form used in the query).
Nonetheless, not all IR engines use stemming, partly because of stemmer errors such
as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

We have focused so far in this chapter on a problem of segmentation: how words
can be segmented into morphemes. We turn now to a brief discussion of the very
related problem of segmenting running text into words and sentences. This task is
called tokenization.TOKENIZATION

Word tokenization may seem very simple in a language like English that separates
words via a special ‘space’ character. As we will see below, not every language does
this (Chinese, Japanese, and Thai, for example, do not). But a closer examination
will make it clear that whitespace is not sufficient by itself. Consider the following
sentences from a Wall Street Journal and New York Times article, respectively:

Mr. Sherwood said reaction to Sea Containers’ proposal
has been "very positive." In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
$62.625, up 62.5 cents.

• Can be thought of as a lexicon-free FST

DR
AF
T

Section 3.9. Word and Sentence Tokenization 25

might not match the keyword marsupial, some IR systems first run a stemmer on the
query and document words. Morphological information in IR is thus only used to
determine that two words have the same stem; the suffixes are thrown away.

One of the most widely used such stemming algorithms is the simple and efficientSTEMMING

Porter (1980) algorithm, which is based on a series of simple cascaded rewrite rules.
Since cascaded rewrite rules are just the sort of thing that could be easily implemented
as an FST, we think of the Porter algorithm as a lexicon-free FST stemmer (this idea
will be developed further in the exercises (Exercise 3.6). The algorithm contains rules
like these:

ATIONAL→ ATE (e.g., relational→ relate)
ING→ ε if stem contains vowel (e.g., motoring→ motor)

See Porter (1980) or Martin Porter’s official homepage for the Porter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat improve the performance
of information retrieval, especially with smaller documents (the larger the document,
the higher the chance the keyword will occur in the exact form used in the query).
Nonetheless, not all IR engines use stemming, partly because of stemmer errors such
as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

We have focused so far in this chapter on a problem of segmentation: how words
can be segmented into morphemes. We turn now to a brief discussion of the very
related problem of segmenting running text into words and sentences. This task is
called tokenization.TOKENIZATION

Word tokenization may seem very simple in a language like English that separates
words via a special ‘space’ character. As we will see below, not every language does
this (Chinese, Japanese, and Thai, for example, do not). But a closer examination
will make it clear that whitespace is not sufficient by itself. Consider the following
sentences from a Wall Street Journal and New York Times article, respectively:

Mr. Sherwood said reaction to Sea Containers’ proposal
has been "very positive." In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
$62.625, up 62.5 cents.

• Is stemming always good? Depends on language,
amount of morph. productiveness, and data size

Thursday, October 2, 14

