
1http://xkcd.com/208/
Tuesday, September 30, 14

http://xkcd.com/208/
http://xkcd.com/208/

2

Lecture 9
Regexes, Finite State Automata

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor (http://brenocon.com)

Tuesday, September 30, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

• Exercise 5 out - due Thursday
• http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html

• PS2 coming

• Midterm review: Wed Oct 15?

3

Tuesday, September 30, 14

http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html
http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html

Today

• Regular expressions

• Finite-state automata

4

Tuesday, September 30, 14

Computation/Statistics in NLP
(in this course)

5

Prob. model
with count-based

learning

Prob. model
with gradient-
based learning

C
ho

m
sk

y
H

ie
ra

rc
hy

Independent
Decisions

Markov model:
N-gram LM

Naive Bayes

Finite State /
Regular Languages

Context Free
Grammars

Logistic Reg.

Syntactic parsers

Part-of-speech taggers

Rule-based

Regexes/
FSAs

Tuesday, September 30, 14

Regular expressions

http://regexpal.com6

Tuesday, September 30, 14

http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com

Regular expressions

• Unix/Perl-style regular expressions

• The current standard in all programming languages

• grep, Python re.search(), JavaScript, Java...

• Operations: Search, match, substitute

• Theory: regular expressions and finite-state
automata

• Just matching

• Next time: Finite-state transducers

• Substitution

7

Tuesday, September 30, 14

Equivalent ways of representing a regular language

8

Regular Language
the set of accepted strings

Regular Expression
a way to type the automata

Finite-state Automaton
machinery for accepting

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Example: Sheep Language

• In the language:
“ba!”, “baa!”, “baaaaa!”

• Not in the language:
“ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

S1 S2 S3 S4

a

b a !

double circle
indicates “accept state”

Finite-state Automata
is a state-machine, described by a list of rules

Set of strings

Regular Expression baa*!

Rules
S1 → b S2
S2 → a S3
S3 → a S3
S3 → ! S4
S4 → [[accept]]

Tuesday, September 30, 14

* corresponds to the loop

Equivalent ways of representing a regular language

10

Regular Language
the set of accepted strings

Regular Expression
a way to type the automata

Finite-state Automaton
machinery for accepting

baa*!

ba!
baa!
baaa!
...

a

b a !
S1 S2 S3 S4

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Finite State Automata, more formally
• A finite state automata is a 5-tuple: (Q, Σ, q0, F, δ(q,i))

– Q : finite set of N states, q0, q1, q2,... qN
– Σ : finite set of symbols: the vocabulary
– δ(q,i) : transition function, given state and input, returns next state

(production rules)
– q0: the start state
– F: the set of final states

q0 q1 q2 q3
b a !

a

b a a a a !

q0

The FSA

State marker

Input tape

Acceptance algorithm:
Repeat:

- Traverse edge labeled with
input to new state.
- If no such edge: REJECT
- ACCEPT if at one of the
final states (here, q3).

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Two types of characters in REs

• Literal
–Every normal text character is an RE,

and denotes itself.

• Meta-characters
–Special characters that allow you to combine REs in

various ways

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

REs: Fundamental operations

Concatenation abc abc

Disjunction a|b a b
 (a|bb)d ad bbd

Kleene star a* ε a aa aaa ...
 c(a|bb)* ca cbba

 Pattern! ! Matches

The empty string

These combine or change regular languages into a new regular language

Tuesday, September 30, 14

cb ?

Operations as on FSAs:
ab (Concatenation)

14

DR
AF
T

26 Chapter 2. Regular Expressions and Automata

q0

qf q0 qf

ε

FSA1 FSA2

Figure 2.25 The concatenation of two FSAs.

q0 qfq0 qf

ε

FSA1

ε ε

Figure 2.26 The closure (Kleene *) of an FSA.

q0

qf

q0 qf

ε

FSA1

FSA2

q0 qf

ε

ε ε

Figure 2.27 The union (|) of two FSAs.

We will return to regular languages and their relationship to regular grammars in Ch. 15.

Tuesday, September 30, 14

15

DR
AF
T

26 Chapter 2. Regular Expressions and Automata

q0

qf q0 qf

ε

FSA1 FSA2

Figure 2.25 The concatenation of two FSAs.

q0 qfq0 qf

ε

FSA1

ε ε

Figure 2.26 The closure (Kleene *) of an FSA.

q0

qf

q0 qf

ε

FSA1

FSA2

q0 qf

ε

ε ε

Figure 2.27 The union (|) of two FSAs.

We will return to regular languages and their relationship to regular grammars in Ch. 15.

Operations as on FSAs:
a* (Kleene star)

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Stephen Kleene, 1909 - 1994

Attended Amherst College!

Best known for recursion
theory in mathematical logic,
together with Alonzo Church,
Alan Turing and others;

and for inventing
regular expressions.

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Practical Applications of RegEx’s

• Web search
• Word processing, find, substitute
• Validate fields in a database (dates, email addr, URLs)
• Searching corpus for linguistic patterns

– and gathering statistics...

• Finite state machines extensively used for
– acoustic modeling in speech recognition
– information extraction (e.g. people & company names)
– morphology
– ...

Tuesday, September 30, 14

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Character Concat went went

Alternatives (go|went) go went
 [aeiou] a o u
 disjunc. negation [^aeiou] b c d f g
 wildcard char . a z &

Loops & skips a* ε a aa aaa ...
 one or more a+ a aa aaa
 zero or one colou?r color colour

 Pattern! ! Matches

Unix/Perl-style RE basics

e.g. https://docs.python.org/2/library/re.html

Precedence marker

Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

Unix/Perl-style RE basics
• Aliases (shorthand)

– \d digits [0-9]
– \D non-digits [^0-9]
– \w alphanumeric [a-zA-Z0-9_]
– \W non-alphanumeric [^a-zA-Z0-9_]
– \s whitespace [\t\n\r\f\v]

• Examples
– \d+ dollars 3 dollars, 50 dollars, 982 dollars
– \w*oo\w* food, boo, oodles

• Escape character
– \ is the general escape character; e.g. \. is not a wildcard, but

matches a period .
– if you want to use \ in a string it has to be escaped \\

e.g. https://docs.python.org/2/library/re.html
Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Andrew McCallum, UMass Amherst,
 including material from Chris Manning and Jason Eisner

• Anchors. a.k.a. “zero width characters”.
• They match positions in the text.
– ^ beginning of line
– $! end of line
– \b word boundary, i.e. location with \w on one

 side but not on the other.
– \B negated word boundary, i.e. any location

 that would not match \b
– \bthe\b! the NOT together

• Counters {1}, {1,2}, {3,}
– go{2,7}al! goooooal NOT goal

Unix/Perl-style RE fancy stuff

e.g. https://docs.python.org/2/library/re.html
Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

21

• Demo: things in tweets

• phone numbers

• dates, times

• emoticons

• Some nice options for grep

• grep --color=always

• grep -P

Tuesday, September 30, 14

Emoticons
useful trick: decompose the regex with nice names

r'...' in python just means “raw” string

NormalEyes = r'[:=]'
Wink = r'[;]'

NoseArea = r'(|o|O|-)' ## rather tight precision, \S might be
reasonable...

HappyMouths = r'[D\)\]]'
SadMouths = r'[\(\[]'
Tongue = r'[pP]'
OtherMouths = r'[doO/\\]' # remove forward slash if http://'s
aren't cleaned

Emoticon = (
 "("+NormalEyes+"|"+Wink+")" +
 NoseArea +
 "("+Tongue+"|"+OtherMouths+"|"+SadMouths+"|"+HappyMouths+")"
)

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
Tuesday, September 30, 14
half the battle in maintainability is just decomposing the rules with nice names. no one does this when you have the hacky perl mentality, but you totally can. here’s one i wrote for emoticons.

note there are precision/recall tradeoffs with every decision you make when writing rules like this. for example, forward-slash for emoticon mouth gives horrible false positives if there are URLs in the
text :/

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
https://github.com/brendano/tweetmotif/blob/master/emoticons.py

Dates (Xerox FST syntax)

open-source implementation: http://code.google.com/p/foma/wiki/ExampleScripts

DateParser.script
Copyright (C) 2004 Lauri Karttunen

define Day [{Monday} | {Tuesday} | {Wednesday} | {Thursday} |
 {Friday} | {Saturday} | {Sunday}] ;
define Month29 {February};
define Month30 [{April} | {June} | {September} | {December}];
define Month31 [{January} | {March} | {May} | {July} | {August} |
 {October} | {December}] ;
define Month [Month29 | Month30 | Month31];

Numbers from 1 to 31
define Date [OneToNine | [1 | 2] ZeroToNine | 3 [%0 | 1]] ;
Numbers from 1 to 9999
define Year [OneToNine ZeroToNine^<4];
Day or [Month and Date] with optional Day and Year
define AllDates [Day | (Day {, }) Month { } Date ({, } Year)];

[...]
define ValidDates [AllDates & MaxDays & LeapDates];

Tuesday, September 30, 14
Lauri Karttunen is famous for lots of finite-state morphology stuff. i think this is a demo script he wrote for identifying dates in a text with an FST.

actually nearly all of it is just FSA-like. the key bit for how you use it is the bottom. it spits out these XML-ish tags around the strings matching ValidDates pattern. this is what FST’s can do.

(note they do more complicated stuff for morphology)

this is actually an open-source implementation of Xerox’s pattern language for FST’s. it is fairly new. i believe it compiles to target OpenFST, a lower level algorithmic library for weighted FST’s; it does all the unions and minimization and other finite state
stuff, so compiles this pattern script into an FST that does date recognition. (OpenFST, in turn is a clone of the old AT&T finite state libraries.)

http://code.google.com/p/foma/wiki/ExampleScripts
http://code.google.com/p/foma/wiki/ExampleScripts

Evaluation

• Regexes are rule-based systems: text classifiers designed by
hand, based on human knowledge.

• Statistical evaluation is not just for machine learning!

• If you have labeled data, evaluate with accuracy, precision,
and recall, etc.

• e.g. look at regex’s matches in data. Percentage that are correct
is the precision.

• Precision is easy. Recall? Typically can only label within a high-
recall filter (e.g. all \d matches for dates).

• Regexes very widely used for quick and dirty analysis
without time for evaluation...

• e.g. data cleaning

24

Tuesday, September 30, 14

• Is there a relationship?

• A regular language is a boolean language
model: every string is either in it or not.

• Described by an FSA.

• A Markov model is a probabilistic language
model: every string has a probability, and they sum
to 1.

• Described by P(nextword | context) probabilities?

25

Tuesday, September 30, 14

26

a

b a !
S1 S2 S3 S4

Boolean FSA A = (Q, Σ, q0, F, δ(q,i))
accepts(A, string) --> {0, 1}

Weighted FSA B: with log-probability edge weights
logprob(B, string) --> (-inf, 0]

What is the set of strings this gives non-zero probability to? Does it give
the same prob for all strings in this set?

a (log(0.9))

b (log(1)) a (log(1)) ! (log(0.1))

S1 S2 S3
START

logprob of string = sum of traversed weights

S5S4

END (0)

Tuesday, September 30, 14

