) OH NO! THE KILLER || BUT TD FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED)| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

NEW SKILL I CoNCoCT | :
: %%\\ IT5 HOPELESS!

ELABORATE FANTASY
SCENARI0S WHERE (T X %
EVERYRODY STAND BACK. T KNOW REGULAR
C s EXPRESSIONS.

| LETS ME. SAVE THE DAY,

0

http://xkcd.com/208/

Tuesday, September 30, 14

http://xkcd.com/208/
http://xkcd.com/208/

Lecture 9
Regexes, Finite State Automata

Intro to NLP, CS585, Fall 2014

http://people.cs.umass.edu/~brenocon/inlp20 | 4/
Brendan O’Connor (http://brenocon.com)

Tuesday, September 30, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

® Exercise 5 out - due Thursday

® http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html

® PS2 coming
® Midterm review:Wed Oct |5?

Tuesday, September 30, 14

http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html
http://people.cs.umass.edu/~brenocon/inlp2014/schedule.html

Today

® Regular expressions
® Finite-state automata

Tuesday, September 30, 14

Computation/Statistics in NLP
(in this course)

E\ Context Free
O Grammars
s
<
9

1 Finite State /

2> Regular Languages
(Vg
-

_g Independent

U Decisions

A

Syntactic parsers

Part-of-speech taggers

Regexes/ Markov model:
FSAs N-gram LM
Naive Bayes Logistic Reg.
Rule-based Prob. model Prob. model

with count-based with gradient-
learning based learning

Tuesday, September 30, 14

Regular expressions

Regex Tester

- S 7 regexpal.com ¢ (3]
f/,;?%(?) regexpal o.1.4 — a JavaScript regular expression tester Version History = Feedback @ Book Blog
“® | Caseinsensitive () | | A$ match at line breaks (m) | | Dot matches all (s; via XRegExp) Options Quick Reference

the

Kleene was awarded the BA degree from Amherst College in 1930. He was awarded EB8 Ph.D. in mathematics
from Princeton University in 1934. His -sis, entitled A Theory of Positive Integers in Formal Logic,
was supervised by Alonzo Church. In the 1930s, he did important work on Church's lambda calculus. In
1935, he joined B mathematics department at EHE University of Wisconsin-Madison, where he spent
nearly all of his career. After two years as an instructor, he was appointed assistant professor in
1937.

While a visiting scholar at the Institute for Advanced Study in Princeton, 1939-40, he laid ENS
foundation for recursion theory, an area that would be his lifelong research interest. In 1941, he
returned to Amherst College, where he spent one year as an associate professor of ma-na:ics.

Become a regex Master Chef. Order Regular Expressions Cookbook 2nd Edition, a brand new upgrade to the O'Reilly Media bestseller, written by the
creator of RegexPal.

«» Permalink — © 2012 Steven Levithan. Powered by XRegExp and Regex Colorizer

http://regexpal.com

Tuesday, September 30, 14

http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com
http://regexpal.com

Regular expressions

® Unix/Perl-style regular expressions
® The current standard in all programming languages
® ogrep, Python re.search(), JavaScript, Java...
® Operations: Search, match, substitute

® Theory: regular expressions and finite-state
automata
® |ust matching

® Next time: Finite-state transducers
® Substitution

Tuesday, September 30, 14

Equivalent ways of representing a regular language

Regular Language
the set of accepted strings

Finite-state Automaton Regular Expression
machinery for accepting a way lo type the automata

Tuesday, September 30, 14

Example: Sheep Language

Set of strings

* |In the language:
“ba!”, “baal”, “baaaaal”

* Not in the language:
“‘ba”, “b!”, “ab!”, “bbaaa!”, “alibaba!”

Finite-state Automata
; ; . . Rules
IS a state-machine, described by a list of rules
S1—->DbS2

S2 —- aS3
S3—-aS3
S3>184

a
o a !
@ »@ q3 S4 — [[accept]]

double circle
iIndicates “accept state”

Regular Expression bag* !

ndrew McCallum, UMass Amherst,
cluding material from Chris Manning and Jason Eisner

Tuesday, September 30, 14

* corresponds to the loop

Equivalent ways of representing a regular language

ba!
Regular Language baa!
the set of accepted strings
baaa!
Finite-state Automaton Regular Expression
machinery for accepting a way lo type the automata
2 baa*!

) a—»@

Tuesday, September 30, 14

Finite State Automata, more formally

» Afinite state automata is a 5-tuple: (Q, 2, qg, F, 6(q,i))
— Q : finite set of N states, qg, 94, 9o,... AN

— 2 : finite set of symbols: the vocabulary

— 98(q,l) : transition function, given state and input, returns next state
(production rules)

— Qo the start state
— F: the set of final states a

b a !
(@

The FSA

Acceptance algorithm:
Repeat:
- Traverse edge labeled with
iInput to new state.
- If no such edge: REJECT
a |a |a |a | - ACCEPT if at one of the
final states (here, g3).

o
State marker F

Input tape

ndrew McCallum, UMass Amherst,

cluding material from Chris Manning and Jason Eisner

Tuesday, September 30, 14

Two types of characters in REs

e Literal

—Every normal text character is an RE,
and denotes itself.

e Meta-characters

—Special characters that allow you to combine REs in
various ways

ndrew McCallum, UMass Amherst,
uding material from Chris Manning and Jason Eisner

Tuesday, September 30, 14

REs: Fundamental operations

These combine or change regular languages into a new regular language

Pattern Matches
Concatenation abc abc
Disjunction alb a b
(a|bb)d ad bbd
Kleene star ax* € g aa aaa ...
c(a|bb)* /ca chba

ndrew McCallum, UMass Amherst,

uding material from Chris Manning and Jason Eisner

The empty string

Tuesday, September 30, 14

cb ?

Operations as on FSAs:
ab (Concatenation)

FSA,

Figure 2.25 The concatenation of two FSAs.

eeeeeeeeeeeeeeeeeeeeee

Operations as on FSAs:

a* (Kleene star)

- -
\~__——’

Figure 2.26 The closure (Kleene *) of an FSA.

Tuesday, September 30, 14

Stephen Kleene, 1909 - 1994

Attended Amherst College!

Best known for recursion
theory in mathematical logic,
together with Alonzo Church,
Alan Turing and others;

and for inventing
regular expressions.

ndrew McCallum, UMass Amherst,
uding material from Chris Manning and Jason Eisner

Tuesday, September 30, 14

Practical Applications of RegEXx’s

 \Web search
» Word processing, find, substitute
» Validate fields in a database (dates, email addr, URLS)

» Searching corpus for linguistic patterns
— and gathering statistics...

* Finite state machines extensively used for
— acoustic modeling in speech recognition
— information extraction (e.g. people & company names)
— morphology

ndrew McCallum, UMass Amherst,
uding material from Chris Manning and Jason Eisner

Tuesday, September 30, 14

Unix/Perl-style RE basics

Pattern Matches
Character Concat went went
Precedence marker
)
Alternatives (go|went) go went
[aeio0u] a o u
disjunc. negation ["aeiou] bcdfg
wildcard char . a z &
Loops & skips a* £ aaaaaa...
one or more a+ a aa aaa
Zero or one colou?r color colour

g o B e.g. https://docs.python.org/2/library/re.html

Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Unix/Perl-style RE basics

 Aliases (shorthand)

—\s
 Examples

digits 0-9]
non-digits N0-9]
alphanumeric a-zA-Z0-9]
non-alphanumeric Na-zA-Z0-9]
whitespace \t\n\r\flv]

—\d+ dollars
— \w*oo\w* food, boo, oodles

* Escape character

3 dollars, 50 dollars, 982 dollars

— \ Is the general escape character; e.g. \ . is not a wildcard, but

matches a period .

— if you want to use \ in a string it has to be escaped \\

ndrew McCallum, UMass Amherst,
cluding material from Chris Manning and Jason Eisner

e.g. https://docs.python.org/2/library/re.html

Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Unix/Perl-style RE fancy stuff

 Anchors. a.k.a. “zero width characters”.
» They match positions in the text.

- 7 beginning of line

— S end of line

— \b word boundary, i.e. location with \w on one
side but not on the other.

— \B negated word boundary, i.e. any location
that would not match \b

—\bthe\b the NOT ftogether

» Counters {1}, {1,2}, {3,}

—go{2,7}al goooooal NOT goal

s e A - e.g. https://docs.python.org/2/library/re.html

hris Manning and Jason Eisner

Tuesday, September 30, 14

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

® Demo: things in tweets
® phone numbers
® dates, times
® emoticons

® Some nice options for grep

® grep --color=always
® grep-P

21

Tuesday, September 30, 14

Emoticons

useful trick: decompose the regex with nice names
r'..." in python just means “raw” string

NormalEyes = r'[:=]"
Wink = r'[;]"'

NoseArea = r'(|o|O|-)"

HappyMouths = r'[D\)\]]"'
SadMouths = r'[\(\[]'
Tongue = r' [pP]"
OtherMouths = r'[do0O/\\]'

Emoticon = (
"("+NormalEyes+" | "+Wink+")" +
NoseArea +
"("+Tongue+" | "+OtherMouths+" | "+SadMouths+" | "+HappyMouths+")"

https://github.com/brendano/tweetmotif/blob/master/emoticons.py

Tuesday, September 30, 14
half the battle in maintainability is just decomposing the rules with nice names. no one does this when you have the hacky perl mentality, but you totally can. here’s one i wrote for emoticons.

note there are precision/recall tradeoffs with every decision you make when writing rules like this. for example, forward-slash for emoticon mouth gives horrible false positives if there are URLs in the
text :/

https://github.com/brendano/tweetmotif/blob/master/emoticons.py
https://github.com/brendano/tweetmotif/blob/master/emoticons.py

Dates (Xerox FST syntax)

DateParser.script
Copyright (C) 2004 Lauri Karttunen

define Day [{Monday} | {Tuesday} | {Wednesday} | {Thursday} |
{Friday} | {Saturday} | {Sunday}] ;

define Month29 {February};

define Month30 [{April} | {June} | {September} | {December}];

define Month31 [{January} | {March} | {May} | {July} | {August} |
{October} | {December}] ;

define Month [Month29 | Month30 | Month31];

Numbers from 1 to 31
define Date [OneToNine | [1 | 2] ZeroToNine | 3 [%0 | 1]] ;

Numbers from 1 to 9999
define Year [OneToNine ZeroToNineA<4];

Day or [Month and Date] with optional Day and Year
define AllDates [Day | (Day {, }) Month { } Date ({, } Year)];

[...]
define ValidDates [AllDates & MaxDays & LeapDates];

open-source implementation: http://code.google.com/p/foma/wiki/ExampleScripts

Tuesday, September 30, 14

Lauri Karttunen is famous for lots of finite-state morphology stuff. i think this is a demo script he wrote for identifying dates in a text with an FST.
actually nearly all of it is just FSA-like. the key bit for how you use it is the bottom. it spits out these XML-ish tags around the strings matching ValidDates pattern. this is what FST’s can do.
(note they do more complicated stuff for morphology)

this is actually an open-source implementation of Xerox’s pattern language for FST’s. it is fairly new. i believe it compiles to target OpenFST, a lower level algorithmic library for weighted FST’s; it does all the unions and minimization and other finite state
stuff, so compiles this pattern script into an FST that does date recognition. (OpenFST, in turn is a clone of the old AT&T finite state libraries.)

http://code.google.com/p/foma/wiki/ExampleScripts
http://code.google.com/p/foma/wiki/ExampleScripts

Evaluation

® Regexes are rule-based systems: text classifiers designed by
hand, based on human knowledge.

® Statistical evaluation is not just for machine learning!
® [f you have labeled data, evaluate with accuracy, precision,
and recall, etc.

® e.g. look at regex’s matches in data. Percentage that are correct
is the precision.

® Precision is easy. Recall? Typically can only label within a high-
recall filter (e.g. all \d matches for dates).

® Regexes very widely used for quick and dirty analysis
without time for evaluation...

® e.g. data cleaning

24

Tuesday, September 30, 14

® |[s there a relationship?

® A regular language is a boolean language
model: every string is either in it or not.

® Described by an FSA.

® A Markov model is a probabilistic language
modael: every string has a probability, and they sum
to |.

® Described by P(nextword | context) probabilities?

25

Tuesday, September 30, 14

Boolean FSA A = (Q, 2, q,, F, 8(q,i))
accepts(A, string) --> {0, |}

b a /\ !
o @
Weighted FSA B: with log-probability edge weights
logprob(B, string) --> (-inf, 0]

(|09(0 9))

START (log(1 (log(1 ' (log(0.1)) 'END (0)
@) —’@—"—’Q

logprob of string = sum of traversed weights

What is the set of strings this gives non-zero probability to! Does it give

the same prob for all strings in this set?
26

Tuesday, September 30, 14

