
1

Lecture 7
Classification: logistic regression

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor (http://brenocon.com)

Sunday, September 28, 14

http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

Today on classification

• Where do features come from?

• Where do weights come from?

• Regularization

• NEXT TIME (Exercise 4 due tomorrow night,
class exercise on Thursday)

• Multiclass outputs

• Training, testing, evaluation

• Where do labels come from? (Humans??!)

2

Sunday, September 28, 14

Linear models for classification

3

Recap: binary case (y=1 or 0)

Train on (x,y) pairs. Predict on new x’s.

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]

Sunday, September 28, 14

Linear models for classification

3

Recap: binary case (y=1 or 0)

Train on (x,y) pairs. Predict on new x’s.

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]

Dot product
a.k.a. inner product

[it’s high when high beta_j’s
coincide with high x_j’s]

�

T
x =

X

j

�jxj

[this is why it’s “linear”]

= -1.1 + 0.8 (#happy) - 0.1 (#hello) + ...

Sunday, September 28, 14

Linear models for classification

3

Recap: binary case (y=1 or 0)

Train on (x,y) pairs. Predict on new x’s.

Hard prediction
(“linear classifier”)

Soft prediction
(“linear logistic regression”)

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]

Dot product
a.k.a. inner product

[it’s high when high beta_j’s
coincide with high x_j’s]

�

T
x =

X

j

�jxj

[this is why it’s “linear”]

= -1.1 + 0.8 (#happy) - 0.1 (#hello) + ...

Sunday, September 28, 14

Linear models for classification

3

ŷ =

(
1 if �

T
x > 0

0 otherwise

Recap: binary case (y=1 or 0)

Train on (x,y) pairs. Predict on new x’s.

Hard prediction
(“linear classifier”)

Soft prediction
(“linear logistic regression”)

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]

Dot product
a.k.a. inner product

[it’s high when high beta_j’s
coincide with high x_j’s]

�

T
x =

X

j

�jxj

[this is why it’s “linear”]

= -1.1 + 0.8 (#happy) - 0.1 (#hello) + ...

Sunday, September 28, 14

Linear models for classification

3

ŷ =

(
1 if �

T
x > 0

0 otherwise

Recap: binary case (y=1 or 0)

Train on (x,y) pairs. Predict on new x’s.

Hard prediction
(“linear classifier”)

Soft prediction
(“linear logistic regression”)

p(y = 1|x,�) = g(�T
x)

(“logistic sigmoid function”)

�

T
x

p
(y

=
1|
x
,
�
)

g(z) = ez/[1 + ez]

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]

Dot product
a.k.a. inner product

[it’s high when high beta_j’s
coincide with high x_j’s]

�

T
x =

X

j

�jxj

[this is why it’s “linear”]

= -1.1 + 0.8 (#happy) - 0.1 (#hello) + ...

Sunday, September 28, 14

� =

0 1 2 3 4 5

0
1

2
3

4
5

Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters

�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14

� =

0 1 2 3 4 5

0
1

2
3

4
5

Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters

�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

(-1.0, 0.8, -0.1, ...)

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14

� =

0 1 2 3 4 5

0
1

2
3

4
5

Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters

�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

(-1.0, 0.8, -0.1, ...)

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14

• Where do features come from?

• Where do weights come from?

• Regularization

• NEXT TIME:

• Multiclass outputs

• Training, testing, evaluation

• Where do labels come from? (Humans??!)

5

�

T
x

p
(y

=
1|
x
,
�
)

We have a model for probabilistic
classification. Now what?

Sunday, September 28, 14

9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

• Input document d (a string...)

• Engineer a feature function, f(d), to generate feature vector x

6

f(d) x

Features! Features!
Features!

• Not just word counts. Anything that might be useful!

• Feature engineering: when you spend a lot of trying and testing new
features. Very important for effective classifiers!! This is a place to
put linguistics in.

f(d) =

Count of “happy”,
(Count of “happy”) / (Length of doc),
log(1 + count of “happy”),
Count of “not happy”,
Count of words in my pre-specified word
list, “positive words according to my
favorite psychological theory”,
Count of “of the”,
Length of document,
...

Typically these use feature templates:
Generate many features at once

for each word w:
 - ${w}_count
 - ${w}_log_1_plus_count
 - ${w}_with_NOT_before_it_count
 -

✓ ◆

Sunday, September 28, 14

Where do weights come from?

• Choose by hand

• Learn from labeled data

• Analytic solution (Naive Bayes)

• Gradient-based learning
7

Sunday, September 28, 14

Learning the weights

• No analytic form, unlike our counting-based
multinomials in NB, n-gram LM’s, or Model 1.

• Use gradient ascent: iteratively climb the log-
likelihood surface, through the derivatives for
each weight.

• Luckily, the derivatives turn out to look nice...

8

Maximize the training set’s (log-)likelihood?

log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

log

(
pi if yi = 1

1� pi if yi = 0

)�

MLE
= argmax

�
log p(y1..yn|x1..xn,�)

pi ⌘ p(yi = 1|x,�)where

Sunday, September 28, 14

Gradient ascent

9

6

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, which was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

100

200

300

400

500

600

700

800

900

1000

housing prices

square feet

pr
ic

e
(in

 $
10

00
)

If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

�1

�2

Loop while not converged (or as long as you can):
 For all features j, compute and add derivatives:

�(new)
j

= �(old)
j

+ ⌘
@

@�
j

`(�(old))

` : Training set log-likelihood

: Step size (a.k.a. learning rate)⌘

This is a generic optimization technique.
Not specific to logistic regression! Finds
the maximizer of any function where
you can compute the gradient.

✓
@`

@�1
, ...,

@`

@�J

◆
: Gradient vector
 (vector of per-element
 derivatives)

Sunday, September 28, 14

Gradient ascent in practice

10

Loop while not converged (or as long as you can):
 For all features j, compute and add derivatives:

�(new)
j

= �(old)
j

+ ⌘
@

@�
j

`(�(old))

` : Training set log-likelihood

: Step size (a.k.a. learning rate)⌘
Better gradient methods
dynamically choose good step
sizes (“quasi-Newton methods”)

The most commonly used is L-BFGS.
Use a library (exists for all programming languages, e.g. scipy).
Typically, the library function takes two callback functions as input:
 - objective(beta): evaluate the log-likelihood for beta
 - grad(beta): return a gradient vector at beta
Then it runs many iterations and stops once done.

Sunday, September 28, 14

Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

where

Sunday, September 28, 14

Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

where

@

@�j
`(�) =

X

i

@

@�j
`i(�)

@

@�j
`i(�) =

Sunday, September 28, 14

Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

where

@

@�j
`i(�) = [yi � p(yi|x,�)] xj

Probabilistic error
(zero if 100% confident
in correct outcome)

(

Feature value
(e.g. word count)

@

@�j
`(�) =

X

i

@

@�j
`i(�)

@

@�j
`i(�) =

Sunday, September 28, 14

Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

E.g. y=1 (positive
sentiment), and
count(“happy”) is high, but
you only predicted 10%
chance of positive label:
want to increase beta_j !

where

@

@�j
`i(�) = [yi � p(yi|x,�)] xj

Probabilistic error
(zero if 100% confident
in correct outcome)

(

Feature value
(e.g. word count)

@

@�j
`(�) =

X

i

@

@�j
`i(�)

@

@�j
`i(�) =

Sunday, September 28, 14

Regularization
• Just like in language models, there’s a danger of overfitting the

training data. (For LM’s, how did we combat this?)

• One method is count thresholding: throw out features that occur
in < L documents (e.g. L=5). This is OK, and makes training
faster, but not as good as....

• Regularized logistic regression: add a new term to penalize
solutions with large weights. Controls the bias/variance
tradeoff.

12

(

�

Regul
= argmax

�

2

4
log p(y1..yn|x1..xn,�)� �

X

j

(�j)
2

3

5

�

MLE
= argmax

�
[log p(y1..yn|x1..xn,�)]

“Quadratic penalty”
or “L2 regularizer”:

Squared distance from origin

“Regularizer constant”:
Strength of penalty

Sunday, September 28, 14

How to set the regularizer?
• Quadratic penalty in logistic regression ...

Pseudocounts for count-based models ...

• Ideally: split data into

• Training data

• Development (“tuning”) data

• Test data (don’t peek!)

• (Or cross-validation)

• Try different lambdas. For each train the
model and predict on devset. Choose lambda
that does best on dev set: e.g. maximizes
accuracy or likelihood.

• Often we use a grid search like (2^-2, 2^-1 ...
2^4, 2^5) or (10^-1, 10^0 .. 10^3). Sometimes
you only need to be within an order of
magnitude to get reasonable performance.

13

Hopefully looks
like this

Dev. set
accuracy

lambda

Use this one

Sunday, September 28, 14

