Lecture 7/
Classification: logistic regression

Intro to NLP, CS585, Fall 2014

http://people.cs.umass.edu/~brenocon/inlp20 | 4/
Brendan O’Connor (http://brenocon.com)

Sunday, September 28, 14


http://people.cs.umass.edu/~brenocon/inlp2014/
http://people.cs.umass.edu/~brenocon/inlp2014/
http://brenocon.com
http://brenocon.com

Today on classification

Where do features come from?
Where do weights come from!

Regularization

NEXT TIME (Exercise 4 due tomorrow night,
class exercise on Thursday)

® Multiclass outputs
® Training, testing, evaluation
® Where do labels come from? (Humans??!)

Sunday, September 28, 14



Linear models for classification

Train on (X,y) pairs. Predict on new X's.

Recap: binary case (y=1 or 0)

Feature vector r = (1, count “happy”, count “hello”,...)

Weights/parameters 3 = (—1.1, 0.8, -0.1,...)

[Foundation of supervised machine learning!] 3

Sunday, September 28, 14



Linear models for classification

Train on (X,y) pairs. Predict on new X's.

Recap: binary case (y=1 or 0)

Feature vector r = (1, count “happy”, count “hello”,...)

(—1.1, 0.8, —0.1,...)

Weights/parameters [
Dot product

aka.inner product 3T a — E B;x; = -1.1+0.8 (#happy) - 0.1 (#hello) + ...
[it’s high when high beta_j’s -
J

coincide with high x_j’s] [this is why it’s “linear’]

[Foundation of supervised machine learning!] 3

Sunday, September 28, 14



Linear models for classification

Train on (X,y) pairs. Predict on new X's.

Recap: binary case (y=1 or 0)

Feature vector X

Weights/parameters [
Dot product

[it’s high when high beta_j’s

(1, count “happy”, count “hello”,...)
(—1.1, 0.8, —0.1,..)

aka.inner product 3T — E B2 = -1.1+08 (#happy) - 0.1 (#hello) + ...
J

coincide with high x_j’s]

Hard prediction

[this is why it’s “linear’]

Soft prediction

(“linear classifier”) (“linear logistic regression”)

[Foundation of supervised machine learning!]

Sunday, September 28, 14



Linear models for classification

Train on (X,y) pairs. Predict on new X's.

Recap: binary case (y=1 or 0)

Feature vector r = (1, count “happy”, count “hello”,...)

(—1.1, 0.8, —0.1,...)

Weights/parameters [
Dot product

aka.inner product 3T a — E B;x; = -1.1+0.8 (#happy) - 0.1 (#hello) + ...
[it’s high when high beta_j’s -
J

coincide with high x_j’s] [this is why it’s “linear’]

Hard prediction Soft prediction
(“linear classifier”) (“linear logistic regression”)
. <(1 if 3Tz > 0
Y 0 otherwise

[Foundation of supervised machine learning!] 3

Sunday, September 28, 14



Linear models for classification

Train on (X,y) pairs. Predict on new X's.

Recap: binary case (y=1 or 0)

Feature vector r = (1, count “happy”, count “hello”,...)

Weights/parameters 3 = (—1.1, 0.8, -0.1,...)
Dot product

aka.inner product 3T a — E B;x; = -1.1+0.8 (#happy) - 0.1 (#hello) + ...
[it’s high when high beta_j’s -
J

coincide with high x_j’s] [this is why it’s “linear’]

Hard prediction Soft prediction
(“linear classifier”) (“linear logistic regression”)
- _ T ~~ 14 —
1 itgTe>0 PU=1lzpf)=g(B2) =
Ty 3 =
J 0 otherwise g(z) =€ /|1 + €7 — s
: W o I
(“logistic sigmoid function”) >
S S N
[Foundation of supervised machine learning!] 3 5-|-x

Sunday, September 28, 14



Visualizing a classifier in feature space

“Biasiterm”
Feature vector r = (1, count “happy”, count “hello”,...)
Weights/parameters (3 =
50% prob where o
Bz =0 0 o
Predict y=1 when 0T
T O :O O X
x> o
’ . £ 0
Predict y=0 when 'T.»’ ¥
Bz <0 5
< 0
O 0 X
= Ry - -
= X
! 0.5+ o _
= | | | | | |
) 0 1 2 3 4 5

o /30%? o Count(“happy”)

Sunday, September 28, 14



Visualizing a classifier in feature space

“Bias term”

v
Feature vector r = (1, count “happy”, count “hello”,...)

Weights/parameters [ = (-1.0, 0.8, -0.1, ...)

50% prob where 0 — ,
Predict y=1 when T
T O :O O X
xr > = o
b E — | o
Predict y=0 when L X .
T S5 N
r <0 0
bras O 0 X
= T T S
K X
|| 0.5+ o — ‘
= | | | | | |
= 0 1 2 3 4 5

o /30%? o Count(“happy”)

Sunday, September 28, 14



Visualizing a classifier in feature space

“Bias term”

v
Feature vector r = (1, count “happy”, count “hello”,...)

Weights/parameters [ = (-1.0, 0.8, -0.1, ...)

50% prob where 0 —
Blz =0
Predict y=1 when .
T e
x>0 T o -
Predict y=0 when o
Bz <0 % T
o O
o 1~ o
B
|| o
= |
Q‘ 1

o 50T:c? o Count(“happy”)

Sunday, September 28, 14



We have a model for probabilistic
classification. Now what!

p(y = 1|z, 8)

Where do features come from!?
Where do weights come from!?

Regularization
NEXT TIME:

® Multiclass outputs

® Training, testing, evaluation
® Where do labels come from? (Humans??!)

Sunday, September 28, 14



* Features!

Input document d (a string...)

AR

® Engineer a feature function, f(d), to generate feature vector x

f(d) =

>

f(d)

Count of “happy”,

(Count of “happy”) / (Length of doc),
log(l + count of “happy”),

Count of “not happy”,

Count of words in my pre-specified word
list, “positive words according to my
favorite psychological theory”,

Count of “of the”,
Length of document,

X

Typically these use feature templates:
Generate many features at once

for each word w:
- ${w} count
- ${w} log | plus count
- ${w}_with NOT before it count

® Not just word counts. Anything that might be useful!

® Feature engineering: when you spend a lot of trying and testing new
features. Very important for effective classifiers!! This is a place to
put linguistics in.

Sunday, September 28, 14



Where do weights come from?

5
]

4
|

Count(“hello”)
2 3
1 1
x /
/ .

1
|

0
|

| I I | |
0 1 2 3 4 5
Count(“happy”)

® Choose by hand

® [earn from labeled data
® Analytic solution (Naive Bayes)
® Gradient-based learning

7

Sunday, September 28, 14



Learning the weights

Maximize the training set’s (log-)likelihood?

M = argmax log p(y1..yn|®1..20, B)

‘ .
Di ify, =1
log p(y1--Ynler. 20, B) = ) _logplyilwi, ) = ) log {1 —p; ify = 0}

where p; = P(yz‘ — 1\33,5)

® No analytic form, unlike our counting-based
multinomials in NB, n-gram LM’s, or Model |.

® Use gradient ascent: iteratively climb the log-
likelihood surface, through the derivatives for

each weight.
® [ uckily, the derivatives turn out to look nice...

8

Sunday, September 28, 14



B2

Gradient ascent

Loop while not converged (or as long as you can):

For all features J, compute and add derivatives:

0
6(@6@(}) _ 5(0ld) 4 n—g(ﬁ(dd))
J J aﬁj

— ~_ | ¢ :Training set log-likelihood

-
//
e

%
//
//
/

Vs \ 7): Step size (a.k.a. learning rate)

( % ot ):Gradient vector

0p1" " 0B

(vector of per-element
derivatives)

This is a generic optimization technique.
Not specific to logistic regression! Finds

N
\\
\\\
~

the maximizer of any function where
, You can compute the gradient.

Sunday, September 28, 14



Gradient ascent in practice

Loop while not converged (or as long as you can):

For all features J, compute and add derivatives:

new O a O
Bl = L (51

/ 853
Better gradient methods ¢ :Training set log-likelihood

dynamically choose good step

. . ) T]: Step size (a.k.a. learning rate)
sizes (“‘quasi-Newton methods”)

The most commonly used is L=-BFGS.
Use a library (exists for all programming languages, e.g. scipy).
Typically, the library function takes two callback functions as input:
- objective(beta): evaluate the log-likelihood for beta
- grad(beta): return a gradient vector at beta
Then it runs many iterations and stops once done.

|0

Sunday, September 28, 14



Gradient of logistic regression

((B) = logp(y1--Yn|T1.-Tn, B) = Zlogp(yﬂxi,ﬁ) — Zﬁé(ﬁ)

where £3(8) = log {p(yz = 1|z, 8) ify; = 1}

p(y; = 0|z, 8) ify; =0

eeeeeeeeeeeeeeeeeeeee



Gradient of logistic regression

((B) = logp(y1--Yn|T1.-Tn, B) = Zlogp(yﬂxi,ﬁ) — Zﬁé(ﬁ)

where £; — ] p(yi =1z, B) ify; =1
h ()= log {p(yiOCE’,ﬁ) if 4; = 0

eeeeeeeeeeeeeeeeeeeee



Gradient of logistic regression
((B) = log p(y1--Yn|T1..Tpn, B) = Zlogp(yi|$i,5) — Z@é(ﬁ)

where £3(8) = log {p(yz = 1|z,8) ify; = 1}

p(y; = 0|z, 8) ify; =0

863- | N——

Probabilistic error T T
(zero if 100% confident Feature value
in correct outcome) (e.g. word count)

Sunday, September 28, 14



Gradient of logistic regression

((B) = logp(y1--Yn|T1.-Tn, B) = Zlogp(yi|$i>5) — Z&'(ﬁ)

08, : b
]

Probabilistic error

(zero if 100% confident Feature value
(e.g. word count)

in correct outcome)

T

E.g.y=I (positive
sentiment), and
count(“‘happy”) is high, but
you only predicted 10%
chance of positive label:
want to increase beta j!

Sunday, September 28, 14




Regularization

® Just like in language models, there’s a danger of overfitting the
training data. (For LM’s, how did we combat this?)

® One method is count thresholding: throw out features that occur
in < L documents (e.g. L=5). This is OK, and makes training
faster, but not as good as....

® Regularized logistic regression: add a new term to penalize
solutions with large weights. Controls the bias/variance
tradeoff.

EMLE — arg mé);x: Elogp(yl..yn\xl..xn,ﬁ)] _

greeul — aremax |log p(y1..yn|T1..2n, B) — )\Z(ﬁj)z

p .
_ / \ ’ )~
“Regularizer constant’™:

“Quadratic penalty”
or “L2 regularizer”:
Squared distance from origin

Strength of penalty

12

Sunday, September 28, 14



How to set the regularizer?

. . o . Use this one
® Quadratic penalty in logistic regression ... /

Pseudocounts for count-based models ...

® |deally: split data into
® Training data

Dev., set °

® Development (“tuning”) data o o

® Test data (don’t peek!) accuracy
® (Or cross-validation)

® Try different lambdas. For each train the
model and predict on devset. Choose lambda lambda
that does best on dev set: e.g. maximizes
accuracy or likelihood.

Hopefully looks

e Often we use a grid search like (2/-2, 27-1 ... : :
274, 215) or (10A-1, 1070 .. 1073). Sometimes like this
you only need to be within an order of
magnitude to get reasonable performance.

|3

Sunday, September 28, 14



