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Today on classification

• Where do features come from?

• Where do weights come from?

• Regularization

• NEXT TIME  (Exercise 4 due tomorrow night, 
class exercise on Thursday)

• Multiclass outputs

• Training, testing, evaluation

• Where do labels come from? (Humans??!)
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Linear models for classification

3

Recap: binary case   (y=1 or 0)

Train on (x,y) pairs.  Predict on new x’s.

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters � = (�1.1, 0.8, �0.1, ...)

[Foundation of supervised machine learning!]
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[Foundation of supervised machine learning!]

Dot product
a.k.a. inner product

[it’s high when high beta_j’s 
coincide with high x_j’s]

�

T
x =

X

j

�jxj

[this is why it’s “linear”]

=  -1.1 + 0.8 (#happy) - 0.1 (#hello) + ...
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ŷ =

(
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T
x > 0

0 otherwise
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Recap: binary case   (y=1 or 0)

Train on (x,y) pairs.  Predict on new x’s.

Hard prediction
(“linear classifier”)

Soft prediction
(“linear logistic regression”)

p(y = 1|x,�) = g(�T
x)

(“logistic sigmoid function”)

�

T
x

p
(y

=
1|
x
,
�
)

g(z) = ez/[1 + ez]
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Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector
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�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14



� =

0 1 2 3 4 5

0
1

2
3

4
5

Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters

�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

(-1.0,  0.8,  -0.1, ...)

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14



� =

0 1 2 3 4 5

0
1

2
3

4
5

Visualizing a classifier in feature space

x = (1, count “happy”, count “hello”, ...)Feature vector

Weights/parameters

�

T
x = 0

50% prob where

Predict y=1 when

�

T
x > 0

Predict y=0 when

�

T
x  0

Count(“happy”)

C
ou

nt
(“

he
llo

”) x
x

x

x

o

o

o

o
x

(-1.0,  0.8,  -0.1, ...)

“Bias term”

�

T
x

p
(y

=
1|
x
,
�
)

Sunday, September 28, 14



• Where do features come from?

• Where do weights come from?

• Regularization

• NEXT TIME:

• Multiclass outputs

• Training, testing, evaluation

• Where do labels come from? (Humans??!)
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We have a model for probabilistic 
classification. Now what?
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9/23/14 12:06 PMexplosion blank pow

Page 1 of 1file:///Users/brendano/Downloads/explosion-blank-pow.svg

• Input document d  (a string...)

• Engineer a feature function, f(d), to generate feature vector x

6

f(d) x

Features! Features!
Features!

• Not just word counts.  Anything that might be useful!

• Feature engineering: when you spend a lot of trying and testing new 
features.  Very important for effective classifiers!!  This is a place to 
put linguistics in.

f(d) = 

Count of  “happy”,
(Count of “happy”) / (Length of doc),
log(1 + count of “happy”),
Count of “not happy”,
Count of words in my pre-specified word 
list, “positive words according to my 
favorite psychological theory”,
Count of “of the”,
Length of document,
...

Typically these use feature templates:
Generate many features at once

for each word w:
  - ${w}_count
  - ${w}_log_1_plus_count
  - ${w}_with_NOT_before_it_count
  - ....

✓ ◆
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Where do weights come from?

• Choose by hand

• Learn from labeled data

• Analytic solution (Naive Bayes)

• Gradient-based learning
7
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Learning the weights

• No analytic form, unlike our counting-based 
multinomials in NB, n-gram LM’s, or Model 1.

• Use gradient ascent: iteratively climb the log-
likelihood surface, through the derivatives for 
each weight.

• Luckily, the derivatives turn out to look nice...

8

Maximize the training set’s (log-)likelihood?

log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

log

(
pi if yi = 1

1� pi if yi = 0

)�

MLE
= argmax

�
log p(y1..yn|x1..xn,�)

pi ⌘ p(yi = 1|x,�)where
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Gradient ascent

9
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, which was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

�1

�2

Loop while not converged (or as long as you can):
    For all features j, compute and add derivatives:

�(new)
j

= �(old)
j

+ ⌘
@

@�
j

`(�(old))

` : Training set log-likelihood

: Step size (a.k.a. learning rate)⌘

This is a generic optimization technique.  
Not specific to logistic regression!  Finds 
the maximizer of any function where 
you can compute the gradient.

✓
@`

@�1
, ...,

@`

@�J

◆
: Gradient vector
  (vector of per-element
   derivatives)
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Gradient ascent in practice

10

Loop while not converged (or as long as you can):
    For all features j, compute and add derivatives:

�(new)
j

= �(old)
j

+ ⌘
@

@�
j

`(�(old))

` : Training set log-likelihood

: Step size (a.k.a. learning rate)⌘
Better gradient methods 
dynamically choose good step 
sizes (“quasi-Newton methods”)

The most commonly used is L-BFGS.
Use a library (exists for all programming languages, e.g. scipy).
Typically, the library function takes two callback functions as input:
    -  objective(beta): evaluate the log-likelihood for beta
    -  grad(beta): return a gradient vector at beta
Then it runs many iterations and stops once done.
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Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

where
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where

@

@�j
`i(�) = [yi � p(yi|x,�)] xj

Probabilistic error
(zero if 100% confident 
in correct outcome)

(

Feature value
(e.g. word count)

@

@�j
`(�) =

X

i

@

@�j
`i(�)

@

@�j
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Gradient of logistic regression

11

`(�) = log p(y1..yn|x1..xn,�) =

X

i

log p(yi|xi,�) =

X

i

`i(�)

`i(�) = log

(
p(yi = 1|x,�) if yi = 1

p(yi = 0|x,�) if yi = 0

)

E.g. y=1 (positive 
sentiment), and 
count(“happy”) is high, but 
you only predicted 10% 
chance of positive label: 
want to increase beta_j !

where

@

@�j
`i(�) = [yi � p(yi|x,�)] xj

Probabilistic error
(zero if 100% confident 
in correct outcome)

(

Feature value
(e.g. word count)

@

@�j
`(�) =

X

i

@

@�j
`i(�)

@

@�j
`i(�) =
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Regularization
• Just like in language models, there’s a danger of overfitting the 

training data.  (For LM’s, how did we combat this?)

• One method is count thresholding: throw out features that occur 
in < L documents (e.g. L=5).  This is OK, and makes training 
faster, but not as good as....

• Regularized logistic regression: add a new term to penalize 
solutions with large weights.  Controls the bias/variance 
tradeoff.

12

(

�

Regul
= argmax

�

2

4
log p(y1..yn|x1..xn,�)� �

X

j

(�j)
2

3

5

�

MLE
= argmax

�
[log p(y1..yn|x1..xn,�)]

“Quadratic penalty” 
or “L2 regularizer”:

Squared distance from origin

“Regularizer constant”:
Strength of penalty
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How to set the regularizer?
• Quadratic penalty in logistic regression ... 

Pseudocounts for count-based models ...

• Ideally: split data into

• Training data

• Development (“tuning”) data

• Test data (don’t peek!)

• (Or cross-validation)

• Try different lambdas. For each train the 
model and predict on devset.  Choose lambda 
that does best on dev set: e.g. maximizes 
accuracy or likelihood.

• Often we use a grid search like (2^-2, 2^-1 ... 
2^4, 2^5) or (10^-1, 10^0 .. 10^3).  Sometimes 
you only need to be within an order of 
magnitude to get reasonable performance.
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Hopefully looks 
like this

Dev. set
accuracy

lambda

Use this one
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