Lecture 7 Classification: logistic regression

Intro to NLP, CS585, Fall 2014

http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O'Connor (http://brenocon.com)

Today on classification

- Where do features come from?
- Where do weights come from?
- Regularization
- NEXTTIME (Exercise 4 due tomorrow night, class exercise on Thursday)
 - Multiclass outputs
 - Training, testing, evaluation
 - Where do labels come from? (Humans??!)

Train on (x,y) pairs. Predict on new x's.

Recap: binary case (y=1 or 0)

Feature vector
$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters
$$\beta = (-1.1, 0.8, -0.1, ...)$$

Train on (x,y) pairs. Predict on new x's.

Recap: binary case (y=1 or 0)

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta = (-1.1, 0.8, -0.1, ...)$$

Dot product

coincide with high x_j's]

a.k.a. inner product [it's high when high beta_j's coincide with high x_j's]
$$\beta^{\mathsf{T}} x = \sum_{j} \beta_{j} x_{j} = -1.1 + 0.8 \, (\text{\#happy}) - 0.1 \, (\text{\#hello}) + \dots$$
[this is why it's "linear"]

Train on (x,y) pairs. Predict on new x's.

Recap: binary case (y=1 or 0)

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta = (-1.1, 0.8, -0.1, ...)$$

Dot product a.k.a. inner product [it's high when high beta_j's

coincide with high x_j's]

$$\beta^{\mathsf{T}} x = \sum_{j} \beta_{j} x_{j} = -1.1 + 0.8 \, (\text{\#happy}) - 0.1 \, (\text{\#hello}) + \dots$$
[this is why it's "linear"]

Hard prediction

Soft prediction ("linear classifier") ("linear logistic regression")

Train on (x,y) pairs. Predict on new x's.

Recap: binary case (y=1 or 0)

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta = (-1.1, 0.8, -0.1, ...)$$

Dot product a.k.a. inner product [it's high when high beta_j's coincide with high x_j's]

$$\beta^\mathsf{T} x = \sum_j \beta_j x_j = -1.1 + 0.8 \, (\text{\#happy}) - 0.1 \, (\text{\#hello}) + \dots$$
 [this is why it's "linear"]

Hard prediction

$$\hat{y} = \begin{cases} 1 & \text{if } \beta^{\mathsf{T}} x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Train on (x,y) pairs. Predict on new x's.

Recap: binary case (y=1 or 0)

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta = (-1.1, 0.8, -0.1, ...)$$

Dot product

a.k.a. inner product

[it's high when high beta_j's

coincide with high x_j's]

$$\beta^{\mathsf{T}} x = \sum_{j} \beta_{j} x_{j} = -1.1 + 0.8 \, (\text{\#happy}) - 0.1 \, (\text{\#hello}) + \dots$$
[this is why it's "linear"]

Hard prediction ("linear classifier")

$$\hat{y} = \begin{cases} 1 & \text{if } \beta^{\mathsf{T}} x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$p(y=1|x,\beta)=g(\beta^{\intercal}x)$$

$$g(z)=e^z/[1+e^z]$$
 ("logistic sigmoid function")

Visualizing a classifier in feature space

"Bias term"

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters

$$\beta =$$

50% prob where

$$\beta^{\mathsf{T}} x = 0$$

Predict y=1 when

$$\beta^{\mathsf{T}}x > 0$$

Predict y=0 when

$$\beta^\mathsf{T} x \leq 0$$

Visualizing a classifier in feature space

"Bias term"

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters
$$\beta = (-1.0, 0.8, -0.1, ...)$$

50% prob where

$$\beta^{\mathsf{T}} x = 0$$

Predict y=1 when

$$\beta^{\mathsf{T}}x > 0$$

Predict y=0 when

$$\beta^\mathsf{T} x \leq 0$$

Visualizing a classifier in feature space

"Bias term"

Feature vector

$$x = (1, \text{ count "happy"}, \text{ count "hello"}, ...)$$

Weights/parameters
$$\beta = (-1.0, 0.8, -0.1, ...)$$

50% prob where

$$\beta^{\mathsf{T}} x = 0$$

Predict y=1 when

$$\beta^{\mathsf{T}}x > 0$$

Predict y=0 when

$$\beta^\mathsf{T} x \leq 0$$

We have a model for probabilistic classification. Now what?

- Where do features come from?
- Where do weights come from?
- Regularization
- NEXT TIME:
 - Multiclass outputs
 - Training, testing, evaluation
 - Where do labels come from? (Humans??!)

• Engineer a feature function, f(d), to generate feature vector x

$$f(d) \longrightarrow x$$

Typically these use <u>feature templates</u>: Generate many features at once

for each word w:

- \${w}_count
- \${w}_log_l_plus_count
- \${w}_with_NOT_before_it_count
-
- Not just word counts. Anything that might be useful!
- <u>Feature engineering</u>: when you spend a lot of trying and testing new features. Very important for effective classifiers!! This is a place to put linguistics in.

Where do weights come from?

- Choose by hand
- Learn from labeled data
 - Analytic solution (Naive Bayes)
 - Gradient-based learning

Learning the weights

Maximize the training set's (log-)likelihood?

$$\beta^{\text{MLE}} = \arg\max_{\beta} \log p(y_1..y_n|x_1..x_n, \beta)$$

$$\log p(y_1..y_n|x_1..x_n, \beta) = \sum_{i} \log p(y_i|x_i, \beta) = \sum_{i} \log \left\{ p_i & \text{if } y_i = 1\\ 1 - p_i & \text{if } y_i = 0 \right\}$$
where $p_i \equiv p(y_i = 1|x, \beta)$

- No analytic form, unlike our counting-based multinomials in NB, n-gram LM's, or Model 1.
- Use gradient ascent: iteratively climb the loglikelihood surface, through the derivatives for each weight.
- Luckily, the derivatives turn out to look nice...

Gradient ascent

Loop while not converged (or as long as you can): For all features j, compute and add derivatives:

$$\beta_j^{(new)} = \beta_j^{(old)} + \eta \frac{\partial}{\partial \beta_j} \ell(\beta^{(old)})$$

 ℓ :Training set log-likelihood

 η : Step size (a.k.a. learning rate)

$$\left(\frac{\partial \ell}{\partial \beta_1},...,\frac{\partial \ell}{\partial \beta_J}\right)$$
: Gradient vector (vector of per-element derivatives)

This is a generic optimization technique. Not specific to logistic regression! Finds the maximizer of any function where you can compute the gradient.

Gradient ascent in practice

Loop while not converged (or as long as you can): For all features **j**, compute and add derivatives:

$$\beta_j^{(new)} = \beta_j^{(old)} + \eta \frac{\partial}{\partial \beta_j} \ell(\beta^{(old)})$$

Better gradient methods dynamically choose good step sizes ("quasi-Newton methods") ℓ :Training set log-likelihood

 η : Step size (a.k.a. learning rate)

The most commonly used is **L-BFGS**.

Use a library (exists for all programming languages, e.g. scipy).

Typically, the library function takes two callback functions as input:

- objective(beta): evaluate the log-likelihood for beta
- grad(beta): return a gradient vector at beta

Then it runs many iterations and stops once done.

$$\ell(\beta) = \log p(y_1..y_n|x_1..x_n,\beta) = \sum_i \log p(y_i|x_i,\beta) = \sum_i \ell_i(\beta)$$
 where
$$\ell_i(\beta) = \log \begin{cases} p(y_i=1|x,\beta) & \text{if } y_i=1\\ p(y_i=0|x,\beta) & \text{if } y_i=0 \end{cases}$$

$$\ell(\beta) = \log p(y_1..y_n|x_1..x_n,\beta) = \sum_i \log p(y_i|x_i,\beta) = \sum_i \ell_i(\beta)$$
 where
$$\ell_i(\beta) = \log \left\{ p(y_i = 1|x,\beta) & \text{if } y_i = 1 \\ p(y_i = 0|x,\beta) & \text{if } y_i = 0 \right\}$$

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_i \frac{\partial}{\partial \beta_j} \ell_i(\beta)$$

$$\frac{\partial}{\partial \beta_i} \ell_i(\beta) =$$

$$\ell(\beta) = \log p(y_1..y_n|x_1..x_n,\beta) = \sum_i \log p(y_i|x_i,\beta) = \sum_i \ell_i(\beta)$$
 where
$$\ell_i(\beta) = \log \begin{cases} p(y_i=1|x,\beta) & \text{if } y_i=1\\ p(y_i=0|x,\beta) & \text{if } y_i=0 \end{cases}$$

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_i \frac{\partial}{\partial \beta_j} \ell_i(\beta)$$

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_{i} \frac{\partial}{\partial \beta_j} \ell_i(\beta)$$

$$\frac{\partial}{\partial \beta_j} \ell_i(\beta) = [y_i - p(y_i|x,\beta)] x_j$$

Probabilistic error (zero if 100% confident in correct outcome)

Feature value (e.g. word count)

$$\ell(\beta) = \log p(y_1..y_n|x_1..x_n,\beta) = \sum_i \log p(y_i|x_i,\beta) = \sum_i \ell_i(\beta)$$
 where
$$\ell_i(\beta) = \log \left\{ p(y_i = 1|x,\beta) & \text{if } y_i = 1 \\ p(y_i = 0|x,\beta) & \text{if } y_i = 0 \right\}$$

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_i \frac{\partial}{\partial \beta_j} \ell_i(\beta)$$

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_{i} \frac{\partial}{\partial \beta_j} \ell_i(\beta)$$

$$\frac{\partial}{\partial \beta_j} \ell_i(\beta) = [y_i - p(y_i|x,\beta)] x_j$$

Probabilistic error (zero if 100% confident in correct outcome)

Feature value (e.g. word count) E.g. y=1 (positive sentiment), and count("happy") is high, but you only predicted 10% chance of positive label: want to increase beta j!

Regularization

- Just like in language models, there's a danger of overfitting the training data. (For LM's, how did we combat this?)
- One method is <u>count thresholding</u>: throw out features that occur in < L documents (e.g. L=5). This is OK, and makes training faster, but not as good as....
- <u>Regularized logistic regression</u>: add a new term to penalize solutions with large weights. Controls the **bias/variance** tradeoff.

$$\beta^{\text{MLE}} = \arg\max_{\beta} \ \left[\log p(y_1..y_n|x_1..x_n,\beta) \right]$$

$$\beta^{\text{Regul}} = \arg\max_{\beta} \ \left[\log p(y_1..y_n|x_1..x_n,\beta) - \lambda \sum_{j} (\beta_j)^2 \right]$$
"Regularizer constant":

Strength of penalty

12

"Quadratic penalty"

or "L2 regularizer":

Squared distance from origin

How to set the regularizer?

- Quadratic penalty in logistic regression ...
 Pseudocounts for count-based models ...
- Ideally: split data into
 - Training data
 - Development ("tuning") data
 - Test data (don't peek!)
- (Or cross-validation)
- Try different lambdas. For each train the model and predict on devset. Choose lambda that does best on dev set: e.g. maximizes accuracy or likelihood.
- Often we use a grid search like (2^-2, 2^-1 ... 2^4, 2^5) or (10^-1, 10^0 .. 10^3). Sometimes you only need to be within an order of magnitude to get reasonable performance.

Dev. set accuracy

Use this one

lambda

Hopefully looks like this