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This course includes
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Computation Machine
Learning
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Computation/Statistics in NLP
(in this course)

A
Context Free .
Grammars Syntactic parsers....
Finite State /
-of- h
Formal Regular Languages Part-of-speech taggers
structure Sequences N-gram LM
Model |
Bag-of-words Naive Bayes Logistic Reg.
Counting-based Discriminative
multinomials linear models

Statistical learning methods
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Classification problems

® Given text d, want to predict label y

s this restaurant review positive or negative!
s this email spam or not!

Which author wrote this text?

(Is this word a noun or verb?)

® d:documents, sentences, etc.
® y:discrete/categorical variable

Goal: from training set of (d,y) pairs, learn
a probabilistic classifier f(d) = P(y|d)
(“supervised learning”)
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Features for model: Bag-of-words

it 6
~ I 5
| love this movie! It's sweet, _ _ the 4
but with satirical humor. The 5 fairy  always love o ! to 3
dialogue is great and the anlél WhimSicalareit | and 3
adventure scenes are fun... friend S anvone seen 2
It manages to be whimsical nhappy dialogue yet 1
and romantic while laughing adventure "ecommend would 1
at the conventions of the whoSWeet of satirical whimsical 1
movie -
fairy tale genre. | would it I but to romantic I times 1
recommend it to just about several yet sweet 1
anyone. I've seen it several the 294N it the - satirical 1
times, and I'm always happy o sconee | . LU adventure 1
to see it again whenever | e the tir’;]eesmanage genre 1
have a friend who hasn't | and and fairy 1
. about while h 1
seen it yet! whenever have umor
_conventions have 1
A with great 1

DT NMY  Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words 1s ignored (the bag of words assumption) and we make use of the frequency of each word.
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Generative vs. Discriminative approaches

Goal: from training set of (d,y) pairs, learn
a probabilistic “classifier” f(d) = P(y|d)

Generative model: use the “noisy channel” idea.
P(y | d) o< P(y) P(d | y;0)

Learning: m@ax. H P(d; | y;;0)  (where it’s just counting)
retrann Naive Bayes

Discriminative model: directly learn this function
P(y | d) = f(d;0)

Learning: fnax H P(yi | d;) (where it's harder
i€train than counting)

. Logistic Regression
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Multinomial Naive Bayes: Unigram LM

Tokens in doc

l ® (Generative story:
P(y | wi.wr) < P(y) P(wi..wr | ¥) e Choose doc category y
l ® For each token position
conditional in doc:
independence H P(wt | y) ® Draw w t

assumption ¢

Parameters: P(w | y) for each document category y and wordtype w

P(y) prior distribution over document categories y

Learning: with pseudocount smoothing,

#(w occurrences in docs with label y) + «
#(tokens total across docs with label y) + Va

Plw|y,a)=
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Multinomial Naive Bayes: Unigram LM

Prediction

Infer most likely class for new document

arg max P(y = k) l:[P(wt |y = k)

Infer posterior probabilities for new document

Ply=Fk|wi..wr) = Ply==Fk) I, P(w |y = k)

- Yw Ply=K)II Plwe |y = k)
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Cat

Documents

Exa m P I e Training -  just plain boring
- entirely predictable and lacks energy
- no surprises and very few laughs
+  very powerful
Learnin g +  the most fun film of the summer
Test ?  predictable with no originality
Estimate prior
P()=2 P(1)=2 | 41 | 041
5 5 P(“predictable”|—) = 1520 P(“predictable”|+) = 9520
e 0+1 e 0+1
Estimate word likelihoods  7™"19) =157 POV =575
with pseudocount=| P(“no”|—) = ﬂ;() P(“no”|+) = %
P(“originality”|—) = lgi;O P(“originality”|+) = %

Prediction/Inference

3 2x1x2x1
P(S|-)P(=) = < x . 324 S 1.8x 107

2 1Ix1x1xl
P(SIH)P(+) = X —g =57x10"7
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NB as a Linear Model

Consider: ratio of posterior probs

P(+ | wy..wr) >| then + more likely
P(— | wy..wr) <I| then - more likely

Odds form of Bayes Rule:

brior ratio likelihood ratio

P(—|—) P(wl..wT —|—) ml..w’f)
P(— P(wl..wT —) 1/ 1..wT)

(—)
(+) Ht P(w[+)
(—)

P
P 1, Plwe]—)

2/34 x 1/34 x2/34 x 1/34
1/29 x 1/29 x 1/29 x /29

|0

3
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NB as a Linear Model

P(+ | wy..wr) - P(+) Ht P(w¢|+)
P(— | wy..wr) P(—) 11 P(we|—)
>| then + more likely
<| then - more likely — P(+) H P(w|+)
P(_) ! P(wt _)
P(+ | wy..wr) P(+) P(w|+)
lo = log log
> P(— | wr.wr) P(-) zt: P(w| =)
>0 then + more likely P(+ vV P(wl|+
<0 then - more likely = log PE_§ | Z Ny lOg PEw _;
2/34 1/34 2/34 1/34
= log —+log +log +log +log
1/29 1/29 1/29 1/29
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NB as a Linear Model

P(+ | wy..wr) P(+) ~ P(w|+)
P(— | wy..wyp) 108 P(-) ;nw 08 P(w

log

>0 then + more likely B

<0 then - more likely
60 + (61:V)Tn

— T
—_ X
Where b
x = (1, count “happy”, count “sad”, ....) [Feature vector

- . R
P(—|— | wl..wT) — exp(ﬁ X) /

1 4+ exp(BTx)

0.5+

| ogistic siomor e’ 1
ogistic sigmoid g( Z) — _
1 4+ e”* l4+e—%* | )

function =

-6 -4 -2 0 2 4 6
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Logistic regression

__exp(8'x)
1 + exp(8Tx)

P(—I— | wl..wT)

® NB (decision between unigram LMs) prescribes
one particular formula for the beta weights.

® (Can we just fit the beta weights to maximize
likelihood of the training data?
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