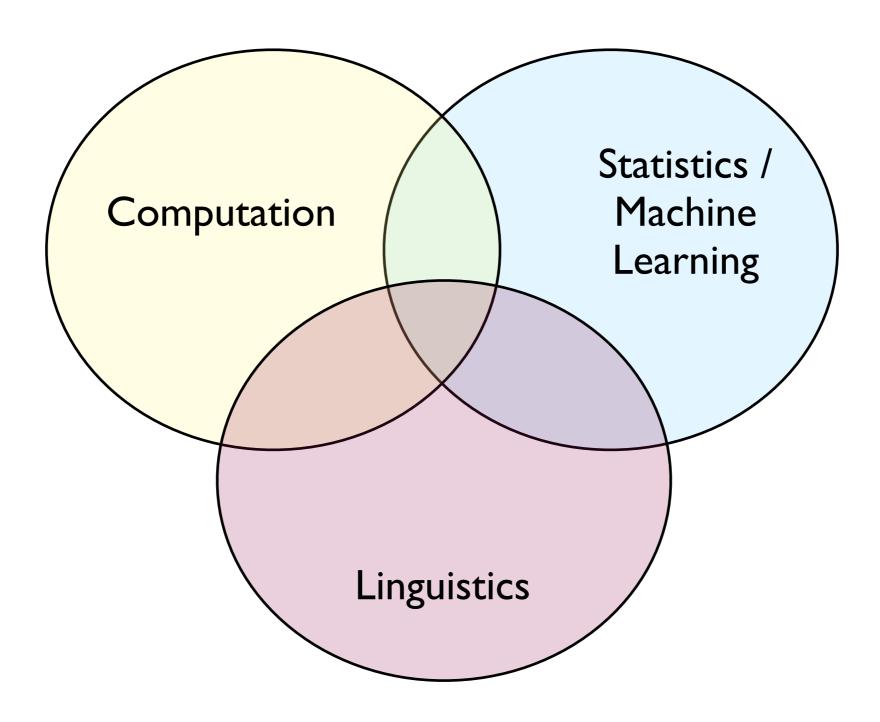
Lecture 6 Classification: Naive Bayes

Intro to NLP, CS585, Fall 2014

http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O'Connor (http://brenocon.com)

This course includes



Computation/Statistics in NLP (in this course)

Formal structure

Context Free Grammars

Finite State / Regular Languages

Sequences

Bag-of-words

Syntactic parsers....

Part-of-speech taggers...

N-gram LM

Model

Naive Bayes

Logistic Reg.

Counting-based multinomials

Discriminative linear models

Statistical learning methods

Classification problems

- Given text **d**, want to predict label **y**
 - Is this restaurant review positive or negative?
 - Is this email spam or not?
 - Which author wrote this text?
 - (Is this word a noun or verb?)
- d: documents, sentences, etc.
- y: discrete/categorical variable

Goal: from training set of (d,y) pairs, learn a probabilistic classifier f(d) = P(y|d) ("supervised learning")

Features for model: Bag-of-words

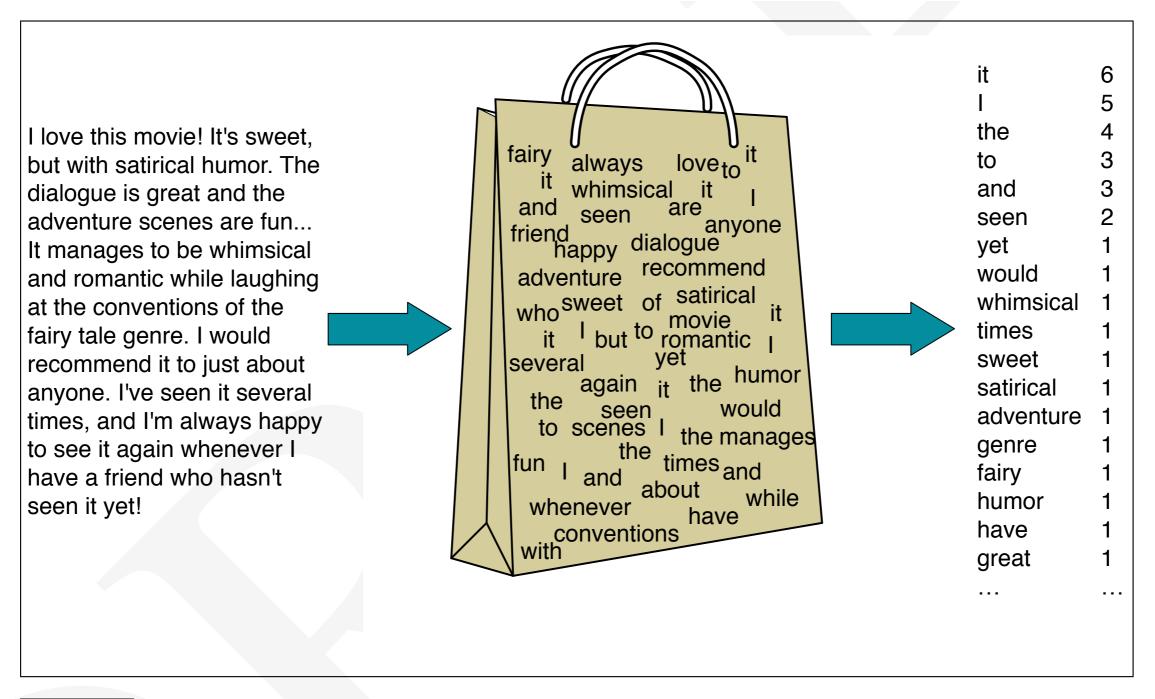


Figure 6.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the words is ignored (the *bag of words* assumption) and we make use of the frequency of each word.

Generative vs. Discriminative approaches

Goal: from training set of (d,y) pairs, learn a probabilistic "classifier" f(d) = P(y|d)

Generative model: use the "noisy channel" idea.

$$P(y \mid d) \propto P(y) P(d \mid y; \theta)$$

Learning:
$$\max_{\theta} \prod_{i \in train} P(d_i \mid y_i; \theta)$$
 (where it's just counting)

Naive Bayes

Discriminative model: directly learn this function

$$P(y \mid d) = f(d; \theta)$$

Learning:
$$\max_{\theta} \prod_{i \in train} P(y_i \mid d_i)$$

(where it's harder than counting)

Logistic Regression

Multinomial Naive Bayes: Unigram LM

Tokens in doc

$$P(y \mid w_1..w_T) \propto P(y) \ P(w_1..w_T \mid y)$$
 conditional independence assumption
$$\prod_t P(w_t \mid y)$$

- Generative story:
- Choose doc category y
- For each token position in doc:
 - Draw w_t

Parameters: $P(w \mid y)$ for each document category ${\bf y}$ and wordtype ${\bf w}$ P(y) prior distribution over document categories ${\bf y}$

Learning: with pseudocount smoothing,

$$P(w \mid y, \alpha) = \frac{\#(w \text{ occurrences in docs with label } y) + \alpha}{\#(\text{tokens total across docs with label } y) + V\alpha}$$

Multinomial Naive Bayes: Unigram LM

Prediction

Infer most likely class for new document

$$\arg\max_{k} P(y=k) \prod_{t} P(w_t \mid y=k)$$

Infer posterior probabilities for new document

$$P(y = k \mid w_1..w_T) = \frac{P(y = k) \prod_t P(w_t \mid y = k)}{\sum_{k'} P(y = k') \prod_t P(w_t \mid y = k')}$$

Example

Learning

Estimate prior

$$P(-) = \frac{3}{5}$$
 $P(+) = \frac{2}{5}$

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	_	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no originality

Estimate word likelihoods with pseudocount=1

$$P(\text{"with"}|-) = \frac{0+1}{14+20} \qquad P(\text{"with"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"no"}|-) = \frac{1+1}{14+20} \qquad P(\text{"no"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"originality"}|-) = \frac{0+1}{14+20} \qquad P(\text{"originality"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"predictable"}|-) = \frac{1+1}{14+20} \qquad P(\text{"predictable"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"with"}|-) = \frac{0+1}{14+20} \qquad P(\text{"with"}|+) = \frac{0+1}{9+20}$$

$$P(\text{"no"}|-) = \frac{1+1}{14+20} \qquad P(\text{"no"}|+) = \frac{0+1}{9+20}$$

Prediction/Inference

$$P(S|-)P(-) = \frac{3}{5} \times \frac{2 \times 1 \times 2 \times 1}{34^4} = 1.8 \times 10^{-6}$$

$$P(S|+)P(+) = \frac{2}{5} \times \frac{1 \times 1 \times 1 \times 1}{29^4} = 5.7 \times 10^{-7}$$

NB as a Linear Model

Consider: ratio of posterior probs

$$\frac{P(+\mid w_1..w_T)}{P(-\mid w_1..w_T)}$$

- >I then + more likely
 - < I then more likely</pre>

Odds form of Bayes Rule:

$$= \frac{P(+)}{P(-)} \frac{P(w_1..w_T \mid +)}{P(w_1..w_T \mid -)} \frac{1/P(w_1..w_T)}{1/P(w_1..w_T)}$$

$$= \frac{P(+)}{P(-)} \frac{\prod_t P(w_t \mid +)}{\prod_t P(w_t \mid +)}$$

$$= \frac{3}{5} \frac{2/34 \times 1/34 \times 2/34 \times 1/34}{1/29 \times 1/29 \times 1/29 \times 1/29}$$

NB as a Linear Model

$$\frac{P(+ \mid w_1..w_T)}{P(- \mid w_1..w_T)} = \frac{P(+)}{P(-)} \frac{\prod_t P(w_t \mid +)}{\prod_t P(w_t \mid -)}$$

- > I then + more likely
- < I then more likely</pre>

$$= \frac{P(+)}{P(-)} \qquad \prod_{t} \frac{P(w_t|+)}{P(w_t|-)}$$

$$\log \frac{P(+\mid w_1..w_T)}{P(-\mid w_1..w_T)}$$

$$\log \frac{P(+ \mid w_1..w_T)}{P(- \mid w_1..w_T)} = \log \frac{P(+)}{P(-)} + \sum_{t} \log \frac{P(w_t \mid +)}{P(w_t \mid -)}$$

>0 then + more likely <0 then - more likely</p>

$$= \log \frac{P(+)}{P(-)} + \sum_{w}^{V} n_w \log \frac{P(w|+)}{P(w|-)}$$

$$= \log \frac{3}{5} + \log \frac{2/34}{1/29} + \log \frac{1/34}{1/29} + \log \frac{2/34}{1/29} + \log \frac{1/34}{1/29}$$

NB as a Linear Model

$$\log \frac{P(+ \mid w_1..w_T)}{P(- \mid w_1..w_T)} = \log \frac{P(+)}{P(-)} + \sum_{w}^{V} n_w \log \frac{P(w \mid +)}{P(w \mid -)}$$
hen + more likely

>0 then + more likely

< 0 then - more likely</p>

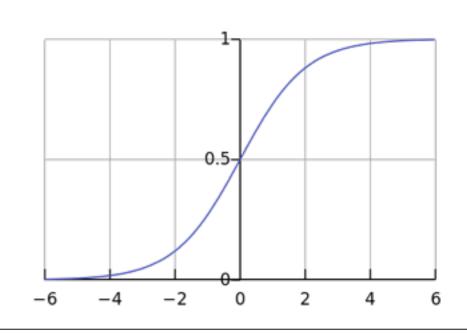
$$= \beta_0 + (\beta_{1:V})^\mathsf{T} \mathbf{n}$$

Where

 $x = (1, \text{ count "happy"}, \text{ count "sad"}, \dots)$ Feature vector

$$P(+ \mid w_1..w_T) = \frac{\exp(\beta^\mathsf{T} \mathbf{x})}{1 + \exp(\beta^\mathsf{T} \mathbf{x})}$$

Logistic sigmoid
$$g(z) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$
 function



Logistic regression

$$P(+ \mid w_1..w_T) = \frac{\exp(\beta^\mathsf{T} \mathbf{x})}{1 + \exp(\beta^\mathsf{T} \mathbf{x})}$$

- NB (decision between unigram LMs) prescribes one particular formula for the beta weights.
- Can we just fit the beta weights to maximize likelihood of the training data?