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• Homework questions?

• Today

• Quick LM review

• Machine translation -- learning

• Next week

• Machine translation -- decoding, broader issues
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Interpolation LM [from last time]

3

be the MLE probability distributionP̂Let

P (w|w�1, w�2) = �2P̂ (w|w�1, w�2) + �1P̂ (w|w�1) + �0P̂ (w)

Interpolation estimate is:

�0 + �1 + �2 = 1Mixing weights:

Sparse Denser Dense
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• Generative view: 
• Choose history size by prob (λ2,λ1,λ0,).

• Generate w by MLE of that history size.

• Size 1 or 0 are “backoff” choices.

• Prediction time: marginalize (average) over history size 
selection.

• Many other methods have different ways of combining 
different sized histories.

• Sharing statistical strength: “X as”

• Extension: common prefixes require less smoothing.  
“of the _” has 59 non-zeros, so “the _” less important.

• To think about: shouldn’t contexts share statistical 
strength beyond suffix matching?

P (w|blacke as) Hamlet from NLTK, V=4812
http://people.cs.umass.edu/~brenocon/inlp2014/lectures/04-hamlet_ngrams.txt
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http://people.cs.umass.edu/~brenocon/inlp2014/lectures/04-hamlet_ngrams.txt
http://people.cs.umass.edu/~brenocon/inlp2014/lectures/04-hamlet_ngrams.txt


MT as Noisy Channel

6

ForeignEnglish

Convention in Collins/Knight:  translating from f into e

Inference task

Thursday, September 11, 14



MT as Noisy Channel

7

EnglishForeign

Convention today (sorry!):  translating from e into f

Inference task

Early 90’s, IBM Research
Thursday, September 11, 14



MT as Noisy Channel

7

EnglishForeign

Convention today (sorry!):  translating from e into f

Inference task

Foreign
LM

Hypothesized LM:
LM generates F

P(f)
Hypothesized 

translation model:
F generates E

P(e | f)

Early 90’s, IBM Research
Thursday, September 11, 14



MT as Noisy Channel

7

EnglishForeign

Convention today (sorry!):  translating from e into f

Inference task

Foreign
LM

Hypothesized LM:
LM generates F

P(f)
Hypothesized 

translation model:
F generates E

P(e | f)

P(f | e) P(e | f) P(f) / P(e)=

Early 90’s, IBM Research
Thursday, September 11, 14



MT as Noisy Channel

7

EnglishForeign

Convention today (sorry!):  translating from e into f

Inference task

Foreign
LM

Hypothesized LM:
LM generates F

P(f)
Hypothesized 

translation model:
F generates E

P(e | f)

P(f | e) P(e | f) P(f)argmax
f

argmax
f=Inference task

(“Decoding”)

P(f | e) P(e | f) P(f) / P(e)=

Early 90’s, IBM Research
Thursday, September 11, 14



MT as Noisy Channel

7

EnglishForeign

Convention today (sorry!):  translating from e into f

Inference task

Foreign
LM

Hypothesized LM:
LM generates F

P(f)
Hypothesized 

translation model:
F generates E

P(e | f)

P(f | e) P(e | f) P(f)argmax
f

argmax
f=Inference task

(“Decoding”)

Learning task P(f): from large 
monolingual corpus

P(e | f) today:
lexical translation models

P(f | e) P(e | f) P(f) / P(e)=

Early 90’s, IBM Research
Thursday, September 11, 14



Data to learn statistical MT

• Statistical machine translation is almost entirely 
based on parallel corpora, a.k.a. bitexts.

• Training data: human-translated sentence pairs 
(e, f)

8
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Lexical Translation

• How do we translate a word? Look it up in the 
dictionary

• Multiple translations

• Different word senses, different registers, 
different inflections (?)

• house, home are common

• shell is specialized (the Haus of a snail is a shell)

Haus : house, home, shell, household

Thursday, January 24, 13
Thursday, September 11, 14



How common is each?
Translation Count

house 5000

home 2000

shell 100

household 80

Thursday, January 24, 13
Thursday, September 11, 14



MLE

p̂MLE(e | Haus) =

8
>>>>>><

>>>>>>:

0.696 if e = house

0.279 if e = home

0.014 if e = shell

0.011 if e = household

0 otherwise

Thursday, January 24, 13
Thursday, September 11, 14



Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in

• Thus, we have an alignment     that indicates which word
     “came from”, specifically it came from       .

• Given the alignments    , translation decisions are 
conditionally independent of each other and depend only 
on the aligned source word    .

p(e | f,m)

e f

eei
f

ai
ei fai

a

e = he1, e2, . . . , emi f = hf1, f2, . . . , fni

Thursday, January 24, 13
Thursday, September 11, 14



Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in

• Thus, we have an alignment     that indicates which word
     “came from”, specifically it came from       .

• Given the alignments    , translation decisions are 
conditionally independent of each other and depend only 
on the aligned source word      .

p(e | f,m)

e f

eei
f

ai
ei fai

a

fai
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e = he1, e2, ...emi f = hf1, f2, ...fni
a = ha1, a2, ...ami each ai 2 {0, 1, ..., n}

=

p(e | f ,m) =
X

a2{0,1,..,n}m

p(a | f ,m)⇥ p(e | a, f ,m)

p(e | f ,m)

Lexical Translation

• Putting our assumptions together, we have:

Alignment Translation | Alignment⇥

p(e | f,m) =
X

a2[0,n]m

p(a | f,m)⇥
mY

i=1

p(ei | fai)

Thursday, January 24, 13

X

a2{0,1,..,n}m

p(a | f ,m)⇥
mY

i=1

p(ei | fai)

[Alignment]  x  [Translation | Alignment]

Modeling assumptions

Chain rule

Thursday, September 11, 14



Lexical Translation

p(ei | fai)
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Lexical Translation

p(ei | fai)

p(house | Haus)
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Lexical Translation

p(ei | fai)

p(house | Haus) p(shell | Haus)
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e = he1, e2, ...emi f = hf1, f2, ...fni
a = ha1, a2, ...ami each ai 2 {0, 1, ..., n}

Lexical Translation

• Putting our assumptions together, we have:

Alignment Translation | Alignment⇥

p(e | f,m) =
X

a2[0,n]m

p(a | f,m)⇥
mY

i=1

p(ei | fai)

Thursday, January 24, 13

=p(e | f ,m)
X

a2{0,1,..,n}m

p(a | f ,m)⇥
mY

i=1

p(ei | fai)

[Alignment]  x  [Translation | Alignment]

Modeling assumptions

Thursday, September 11, 14



Alignment

p(a | f,m)
Most of the action for the first 10 years
of MT was here. Words weren’t the problem,
word order was hard.

Thursday, January 24, 13
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Alignment
• Alignments can be visualized in by drawing 

links between two sentences, and they are 
represented as vectors of positions:

a = (1, 2, 3, 4)>

Thursday, January 24, 13
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Reordering
• Words may be reordered during 

translation.

a = (3, 4, 2, 1)>

Thursday, January 24, 13
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Word Dropping

• A source word may not be translated at all

a = (2, 3, 4)>

Thursday, January 24, 13
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Word Insertion
• Words may be inserted during translation

English just does not have an equivalent

But it must be explained - we typically assume
every source sentence contains a NULL token

a = (1, 2, 3, 0, 4)>

Thursday, January 24, 13
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One-to-many Translation

• A source word may translate into more 
than one target word

a = (1, 2, 3, 4, 4)>

Thursday, January 24, 13
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Many-to-one Translation

• More than one source word may 
not translate as a unit in lexical translation

das Haus brach zusammen

the house collapsed

1 2 3 4

1 2 3

a =???

Thursday, January 24, 13
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Many-to-one Translation

• More than one source word may 
not translate as a unit in lexical translation

das Haus brach zusammen

the house collapsed

1 2 3 4

1 2 3

a =??? a = (1, 2, (3, 4)>)> ?
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IBM Model 1
• Simplest possible lexical translation model

• Additional assumptions

• The m alignment decisions are independent

• The alignment distribution for each    is uniform 
over all source words and NULL

ai

for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

Thursday, January 24, 13
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

p(e,a | f,m) =

Thursday, January 24, 13
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i=1

1

1 + n
p(e,a | f,m) =
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(ei | fai)p(e,a | f,m) =

p(ei, ai | f,m) =
1

1 + n
p(ei | fai)

p(e,a | f,m) =
mY

i=1

p(ei, ai | f,m)
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Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

Recall our independence assumption: all alignment decisions are 
independent of each other, and given alignments all translation 
decisions are independent of each other, so all translation 
decisions are independent of each other.
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Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

Recall our independence assumption: all alignment decisions are 
independent of each other, and given alignments all translation 
decisions are independent of each other, so all translation 
decisions are independent of each other.

p(a, b, c, d) = p(a)p(b)p(c)p(d)
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p(ei | fai)
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Recall our independence assumption: all alignment decisions are 
independent of each other, and given alignments all translation 
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mY
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Example

das Haus ist klein
1 2 3 4

1 2 43

NULL
0

Start with a foreign sentence and a target length.
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Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is small

3
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What is this good for?

• 1. Evaluate translation quality

• 2. Find the best alignment

• The IBM models are still used for this, though not 
as translation models

59
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Finding the Viterbi 
Alignment

a⇤ = arg max

a2[0,1,...,n]m
p(a | e, f)

= arg max

a2[0,1,...,n]m

p(e,a | f)P
a0 p(e,a0 | f)

= arg max

a2[0,1,...,n]m
p(e,a | f)

a⇤i = arg

n
max

ai=0

1

1 + n
p(ei | fai)

= arg

n
max

ai=0
p(ei | fai)

Thursday, January 24, 13

= p(a|f) p(e|a, f)
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Finding the Viterbi 
Alignment

das Haus ist klein
1 2 3 4

NULL
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the home
1 2 4
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3
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Learning Lexical 
Translation Models
• How do we learn the parameters

• “Chicken and egg” problem

• If we had the alignments, we could 
estimate the parameters (MLE)

• If we had parameters, we could find the 
most likely alignments

p(e | f)
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How to learn?

• But a is a latent variable.  The marginal log-
likelihood needs to sum-out the alignments.  No 
closed form.

90

• Training data: tons of (e,f) pairs.  Want to learn 
theta: lexical translation probabilities.

• If knew the alignments a, MLE would be easy!

max

✓

X

(e,f)

log p(e | f ; ✓)

=

X

(e,f)

log

 
X

a

p(a | f ; ✓)⇥ p(e | a, f ; ✓)
!

max

✓

X

(e,f)

log p(e | a, f ; ✓)
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EM Algorithm
• pick some random (or uniform) parameters

• Repeat until you get bored (~ 5 iterations for lexical translation 
models)

• using your current parameters, compute “expected” 
alignments for every target word token in the training data

• keep track of the expected number of times f translates into e 
throughout the whole corpus

• keep track of the expected number of times that f is used as 
the source of any translation

• use these expected counts as if they were “real” counts in the 
standard MLE equation

p(ai | e, f) (on board)
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EM for Model 1
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EM for Model 1
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Convergence
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Now what?

• Decoding: find the best translation for a 
sentence

• Alignments: find the best alignment

• Evaluation?

• Other approaches?

98
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