
(today we are assuming sentence segmentation)

1

Wednesday, September 10, 14



Your TA: David Belanger

2

• http://people.cs.umass.edu/~belanger/

• I am a third year PhD student advised by Professor 
Andrew McCallum. Before that, I was an Associate 
Scientist in the Speech, Language, and Multimedia 
Department at Raytheon BBN Technologies, where I 
worked on multilingual optical handwriting recognition. 
I received a B.A. in mathematics from Harvard 
University, where I worked with Eric Dunham and Jim 
Rice. We developed methods for numerically simulating 
earthquake ruptures along rough fault surfaces. 
Currently, my research focus is on machine learning and 
natural language processing. This summer, I am interning 
with Sham Kakade at Microsoft Research New England.

• Office hours TBA
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• Announcements

• Exercise 1 grades on Moodle

• Piazza: post questions for benefit of everyone

• PS1 out later today. Due next Wed, 11:59pm

• Try it and post any questions asap!

• Exercises will be posted end of week

• Grading and policies up on website

• Today

• Exercise 2: in-class exercise and turn-in

• Language models

3
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• Group exercise: translate to English sentence
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Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/

Brendan O’Connor (http://brenocon.com)
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Lecture 3:
Language Models

Some material borrowed from
Andrew McCallum and Dan Klein
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Bayes Rule for text inference

Codebreaking
P(plaintext | encrypted text) / P(encrypted text | plaintext) P(plaintext)

Speech recognition
P(text | acoustic signal) / P(acoustic signal | text) P(text)

Optical character recognition
P(text | image) / P(image | text) P(text)

Machine translation
P(target text | source text) / P(source text | target text) P(target text)

Noisy 
channel 
model

Observed
data

Original
text

Hypothesized transmission process

Inference problem
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Language Models for Sentences

• We want a model that gives: probability of any 
sentence P(w1 ... wT)

• Idea: “good” sentences should have higher probability

• Training data: large sample of many tokenized 
sentences (each is a word sequence)

• Test data: on new sentences, is probability high?

7

Machine translation
P(target text | source text) / P(source text | target text) P(target text)
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Chomsky (Syntactic Structures, 1957):

Second, the notion “grammatical” cannot be identified with “meaningful” 
or “significant” in any semantic sense.  Sentences (1) and (2) are equally 
nonsensical, but any speaker of English will recognize that only the former 
is grammatical.

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.

. . .  Third, the notion “grammatical in English” cannot be identified in any 
way with the notion “high order of statistical approximation to English”. It 
is fair to assume that neither sentence (1) nor (2) (nor indeed any part of 
these sentences) has ever occurred in an English discourse. Hence, in any
statistical model for grammaticalness, these sentences will be ruled out on 
identical grounds as equally ‘remote’ from English. Yet (1), though 
nonsensical, is grammatical, while (2) is not.
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Language Models for Sentences

• Finite vocabulary

• Goal: define probability distribution over an 
infinite set of strings (word sequences).
P(w1 ... wT) for any (w1 ... wT) of any length

• wT is always an “END” symbol.

• the END

• a END

• the store END

• Alice talked to Bob . END

• Alice hated on Bob . END

9

Wednesday, September 10, 14



Whole-sentence estimation

• N sentences in training data

• #(...) means the count of how many times it 
appeared in the training data.

10

P (w1..wT ) =
#(w1..wT )

N

• Does not generalize!  (overfits the training data)
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History-based prob view

11

• Apply chain rule - no model assumptions yet

P (w1..wT ) =
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History-based prob view

11

• Apply chain rule - no model assumptions yet

= P (w1..wT�1)P (wT | w1..wT�1)

P (w1..wT ) =
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History-based prob view

11

• Apply chain rule - no model assumptions yet

= P (w1..wT�1)P (wT | w1..wT�1)

= P (w1..wT�2)P (wT�1 | w1..wT�2)P (wT | w1..wT�1)

P (w1..wT ) =
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History-based prob view

11

P (w1..wT ) = P (w1)P (w2|w1)P (w3|w1, w2)P (w4|w1, w2, w3)...

=
Y

t

P (wt | w1..wt�1)

• Apply chain rule - no model assumptions yet

= P (w1..wT�1)P (wT | w1..wT�1)

= P (w1..wT�2)P (wT�1 | w1..wT�2)P (wT | w1..wT�1)

P (w1..wT ) =
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too, the user set up the visualization so that the default view would 
show the number of times Mr. Clinton had said “I don’t know,” “I 
don’t remember,” “I don’t think,” etc (Fig 6). In short, both 
visualizations gave a clear portrait of evasive testimony.  

Given that these scandals focused on politicians at opposite ends 
of the political spectrum, the visualizations take on an evident spin, 
with even the act of their creation suggesting political affiliations and 
beliefs. This sort of contribution to “counter” someone else’s 
creation on Many Eyes indicates that users are integrating these tools 
in their communicative practices. Far from being dispassionate 
representations of data, the two “I don’t recall” word trees are part of 
a political conversation, a dialog happening through visualization. 

The ability to visualize political transcripts has resonated with our 
user base. Since the word tree was launched during the preparation 
for the 2008 U.S. presidential election, users frequently created word 
trees of political speeches, debates among candidates, and media 
coverage of the election.   

Emotionally charged transcripts such as congressional hearings 
and political speeches are not the only kind of transcripts being 
visualized on Many Eyes. Even communities that are traditionally 
immersed in numerical data, such as financial analysts and investors, 
have started to explore the possibilities of using word trees to 
visualize transcripts. Earlier this year Seeking Alpha, a well-known 
online column of stock market opinion and analysis, embedded both 
a word tree and a tag cloud of the transcript of an earnings 
conference call on its site and invited readers comment on their 
value. 

The post quickly generated a number of comments, not all of 
them in approval of the experiment. Some felt that the word tree was 
more helpful than the tag cloud because it kept the structure of the 
text, while others mentioned that it was easier not to use 
visualization at all: 

 

Just give us the text, we know how to find (Ctrl+f) 
 
As with the Blogos author, a common request was for the ability 

to click on an item in the visualization and see the places in the raw 
transcript where that item appears.      

 

5.2 Visualizing the written word 
The word tree was designed to handle texts of up to a million 

tokens, and to demonstrate this we created a visualization of the 
King James Bible, which contains 1,007,116 words and punctuation 
marks. Once the visualization was posted on the site, it was quickly 
picked up by a group of users interested in religious texts. The 
reaction was positive; this comment, unusual for visualizations in 
general, typified the response:  

 
This is a new tool to teach the Bible's truth. God bless you. 
 
Other users promptly explored various entryways into the text, 

looking for expressions such as “days of thy,” “my love,” and “love 
the lord” (Figure 9).  As previously noted [13], visualizations of 
religious data have been a regular occurrence in Many Eyes since the 
site was launched. Perhaps it is not surprising that this community 
would be excited to experiment with the analytical possibilities of 
the word tree.    

Users have also created numerous word trees of literary works, 
musical lyrics, and academic papers. An interesting trend is the 
visualization of online social activity. Some users have started 
visualizing collections of Twitter posts, blog posts, and newsgroup 
discussions. It seems that, like tag clouds, word trees might be 
helpful in giving people a quick sense of distributed activity online. 

5.3 Visualizing structure 
Although the word tree was designed to analyze unstructured 

text, it is based on a visualization of abstract tree structures. Users 
quickly caught on to the possibility of visualizing structured data and 
started specially formatting data in ways that would induce the word 
tree to show tree-structured information.    

One person uploaded a data set of Greek nominal suffixes used in 
the New Testament with full nominal morphology. Because this data 
set is not a regular text passage but rather a list of words spaced out 
into individual letters, the word tree looks cryptic (see Fig. 7). If, for 
example, a user does a search for, NPM (nominative, plural, 
masculine words), they will see the suffix tree is dominated by –OI 
and –ONTES. This arrangement shows that the large majority of 
nominative, plural, masculine words in Greek end in -OI or -ONTES.  

Another user created a data set to show the different pathways to 
the U.S. Presidency. The data set lists the names of 19 American 
presidents and the sequence of titles held by each one of them (Fig. 

 
Fig 5: Alberto Gonzales’ testimony in 2007. 

 
 

 
Fig 6: Bill Clinton’s testimony in 1998. 
 
 
 

 
 

 
Fig 7. Data set and word tree of Greek nominal suffixes in the 
Bible. Here, “npm” refers to nominative, plural, masculine nouns. 

 

WordTree (Wattenberg and Viégas, 2008)
each node visualizes full history model 
Demo: http://www.jasondavies.com/wordtree/?source=flickr-comments.txt&prefix=Thank

P (wt | w1..wt�1)

History-based data view

Modeling point of view: too sparse!
P( __  |  OK, turn to page 144 and see )
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Markov chain models
• Markov process: words are generated one at a time.

Process ends when END symbol is emitted.

• First-order Markov assumption:
Assume a word depends only on previous word

13

P (wt|w1..wt�1) = P (wt|wt�1)

• This yields joint probability

P (w1..wT ) =
Y

t

P (wt | w1..wt�1)

=
Y

t

P (wt | wt�1)

<-- chain rule

<-- Markov assumption
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Thank you for sharing

the the the the

(1)

(2)

Y

t

P (wt)

0th-order
(unigrams) Y

t

P (wt|wt�1)

1st order
(bigrams)

Which prefers which?
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Markov chain models
• First-order Markov assumption:

Assume a word depends only on previous word

P (w1..wT ) =
Y

t

P (wt | wt�1)

• MLE (maximum likelihood) estimator:

P( START I like cats . END ) =

• START symbol for convenient representation

“2-gram model”
“bigram model”

#(START I)
#(START)

#(I like)
#(I)

#(like cats)
#(he)

#(cats .)
#(cats)

#(. END)
#(.)

P(I | START) P(like | I) P(cats | like) P(. | cats) P(END | .)=

=

P (wt|wt�1) =
#(wt�1, wt)

#(wt�1)
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

Andrei Andreyevich Markov

• Graduate of Saint Petersburg University 
(1878), where he began a professor in 
1886.

• Mathematician, teacher, political activist
– In 1913, when the government celebrated 

the 300th anniversary of the House of 
Romanov family, Markov organized a 
counter-celebration of the 200th anniversary 
of Bernoulli’s discovery of the Law of Large 
Numbers.

• Markov was also interested in poetry and 
he made studies of poetic style.

1856 - 1922
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

Markov (1913)

• Took 20,000 characters from Pushkin’s Eugene 
Onegin to see if it could be approximated by a first-
order chain of characters.

ct = vowel ct = consonant
ct-1 = vowel 0.13 0.87

ct-1 = consonant 0.66 0.34

vowel consonant
0.43 0.57

0th order model

1st order model
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

Markov Approximations to English

• Zero-order approximation, P(c)
–XFOML RXKXRJFFUJ ZLPWCFWKCRJ 

FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD
• First-order approximation, P(c|c)

–OCRO HLI RGWR NWIELWIS EU LL NBNESEBYA 
TH EEI ALHENHTTPA OOBTTVA

• Second-order approximation, P(c|c,c)
–ON IE ANTSOUTINYS ARE T INCTORE ST BE S 

DEAMY ACHIN D ILONASIVE TUCOOWE AT 
TEASONARE FUSO TIZIN ANDY TOBE SEACE 
CTISBE

[From Shannon’s information theory paper]
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Sparsity vs ngram size

19

Y

t

P (wt)

0th-order
(unigrams) Y

t

P (wt|wt�1)

1st order
(bigrams)

2nd order
(trigrams)Y

t

P (wt|wt�1, wt�2)

P (w1..wT ) modeled as...

Number of parameters?

V

Number of non-zero parameters?

Whole-sentence
memorization

. . . .

. . . .

Wednesday, September 10, 14



Sparsity vs ngram size
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Y

t

P (wt)

0th-order
(unigrams) Y

t

P (wt|wt�1)

1st order
(bigrams)

2nd order
(trigrams)Y

t

P (wt|wt�1, wt�2)

P (w1..wT ) modeled as...

Number of parameters?

V V2

Number of non-zero parameters?

Whole-sentence
memorization

. . . .

. . . .
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Sparsity vs ngram size

19

Y

t

P (wt)

0th-order
(unigrams) Y

t

P (wt|wt�1)

1st order
(bigrams)

2nd order
(trigrams)Y

t

P (wt|wt�1, wt�2)

P (w1..wT ) modeled as...

Number of parameters?

V V2 V3

Number of non-zero parameters?

Whole-sentence
memorization

. . . .

. . . .
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

Severity of the sparse data problem

Vocab size 260,741 words, 365M words training

count 2-grams 3-grams

1 8,045,024 53,737,350

2 2,065,469 9,229,958

3 970,434 3,654,791

>4 3,413,290 8,728,789

>0 14,494,217 75,349,888

possible 6.8 x 1010 1.7 x 1016
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

The Zero Problem

• Necessarily some zeros
–trigram model: 1.7 x 1016 parameters
–but only 3.6 x 108 words of training data

• How should we distribute some probability mass 
over all possibilities in the model
–optimal situation: even the least frequent trigram 

would occur several times, in order to distinguish its 
probability versus other trigrams

–optimal situation cannot happen, unfortunately
(how much data would we need?)

• Two kinds of zeros: p(w|h)=0, or even p(h)=0

Wednesday, September 10, 14



Andrew McCallum, UMass Amherst, Slide material from Dan Klein
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Parameter Estimation
 Maximum likelihood estimates won’t get us very far

 Need to smooth these estimates

 General method (procedurally)
 Take your empirical counts

 Modify them in various ways to improve estimates

 General method (mathematically)
 Often can give estimators a formal statistical interpretation

 … but not always

 Approaches that are mathematically obvious aren’t always what works

3516 wipe off the excess 
1034 wipe off the dust
547 wipe off the sweat
518 wipe off the mouthpiece
…
120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice
-----------------
28048 wipe off the *

Smoothing

 We often want to make estimates from sparse statistics:

 Smoothing flattens spiky distributions so they generalize better

 Very important all over NLP, but easy to do badly!
 We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

a
lle

g
a
tio

n
s

ch
a
rg

e
s

m
o
tio

n

b
e
n
e
fit

s

…

a
lle

g
a
tio

n
s

re
p
o
rt

s

cl
a
im

s

ch
a
rg

e
s

re
q

u
e

st

m
o
tio

n

b
e
n
e
fit

s

…

a
lle

g
a
tio

n
s

re
p
o
rt

s

cl
a

im
s

re
q
u
e
st

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

12

Parameter Estimation
 Maximum likelihood estimates won’t get us very far

 Need to smooth these estimates

 General method (procedurally)
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Pseudocount (Dirichlet) smoothing
(illustrated for unigrams)

MLE (maximum likelihood estimate)
Relative frequency estimator

Pseudocount smoothing.
MAP (maximum a-posteriori)
with Dirichlet prior

is shorthand for ...
which is solved by

Model

Estimator
ˆ✓MLE

= argmax

✓
P (w1..wn|✓)

✓̂MLE
w =

#(w)

n

PMLE(w) =
#(w)

n

PMAP(w) =
#(w) + ↵

n+ V ↵
which is solved by

Add a prior
Estimator
ˆ✓MAP

= argmax

✓
P (w1..wn|✓)P (✓)

is shorthand for ...
✓̂MAP
w =

#(w) + ↵

n+ V ↵

P (w|✓) = ✓w

P (✓) = Dirichlet(↵+ 1)
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Linear interpolation

• Pseudocount smoothing: simple but works poorly.

• Interpolation: mix between related, denser histories

25

P (w|w�1, w�2) = �P̂ (w|w�1, w�2) + �0P̂ (w|w�1) + �00P̂ (w)

• Allows sharing of statistical strength between 
contexts with shared prefixes.

• Mixing parameters can be learned with EM (later)

• Many other methods use smarter ways of 
combining stats from different sized contexts
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Evaluation
• Intrinsic evaluation: likelihood of testset sentences

26

• Extrinsic evaluation: MT or ASR or other task accuracy

Y

t2testset

P (wt|wt�k+1..wt�1; ✓)

1

N
tok

X

t2testset

logP (w
t

|w
t�k+1..wt�1; ✓)

“Perplexity”: branching factor interpretation
(Note: textbook & many sources assume log-base-2)

exp

 
� 1

N
tok

X

t2testset

logP (w
t

|w
t�k+1..wt�1; ✓)

!

Likelihood =

Mean loglik =

Perplexity =
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Andrew McCallum, UMass Amherst, Slide material from Dan Klein

19

What Actually Works?
 Trigrams and beyond:

 Unigrams, bigrams 
generally useless

 Trigrams much better (when 
there’s enough data)

 4-, 5-grams really useful in 
MT, but not so much for 
speech

 Discounting
 Absolute discounting, Good-

Turing, held-out estimation, 
Witten-Bell

 Context counting
 Kneser-Ney construction 

oflower-order models

 See [Chen+Goodman] 
reading for tons of graphs!

[Graphs from
Joshua Goodman]

Data >> Method?
 Having more data is better…

 … but so is using a better estimator
 Another issue: N > 3 has huge costs in speech recognizers

5.5
6

6.5
7

7.5

8
8.5

9
9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

En
tr

op
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Chen and Goodman 1998, “Empirical Study of Smoothing Techniques for LM”
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Data vs Models
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webnews KN PP
target C5
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+webnews C5

+web C5

Figure 4: Perplexities with Kneser-Ney Smoothing
(KN PP) and fraction of covered 5-grams (C5).

7.3 Perplexity and n-Gram Coverage
A standard measure for language model quality is
perplexity. It is measured on test data T = w|T |

1 :

PP (T ) = e
� 1

|T |

|T |

i=1
log p(wi|wi�1

i�n+1) (7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NISTMT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.
Note that the perplexities of the different language

models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.

 0.34
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LM training data size in million tokens
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+0.56BP/x2

+0.51BP/x2

+0.66BP/x2

+0.70BP/x2

+0.39BP/x2
+0.15BP/x2

target KN
+ldcnews KN

+webnews KN
target SB

+ldcnews SB
+webnews SB

+web SB

Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.
Increase in coverage depends on the training data

set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results
We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.

865
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Issues with MLE n-grams

• Sparsity issues

• Unseen words should get non-zero probability.  (solution: smoothing)

• Different words should share statistical strength.  
(solution: clustering/latent vars)
Our smoothing methods today still can’t solve Chomsky’s example
if all bigrams were unseen in training data ... need latent variable 
models to get it; see (Pereira 2000)

• (1) Colorless green ideas sleep furiously.

• (2) Furiously sleep ideas green colorless.

• Representation issues

• Topicality and syntax: long-distance phenomena also affect coherency

• But, hard to beat well-smoothed n-grams on lots and lots of 
data...

29

Wednesday, September 10, 14

http://rsta.royalsocietypublishing.org/content/358/1769/1239.full.pdf
http://rsta.royalsocietypublishing.org/content/358/1769/1239.full.pdf

