Lecture 2: Probability and Language Models

Intro to NLP, CS585, Fall 2014
Brendan O'Connor (http://brenocon.com)

Admin

- Waitlist
- Moodle access: Email me if you don't have it
- Did you get an announcement email?
- Piazza vs Moodle?
- Office hours today

Things today

- Homework: ambiguities
- Python demo
- Probability Review
- Language Models

Python demo

- [TODO link ipython-notebook demo]
- For next week, make sure you can run
 - Python 2.7 (Built-in on Mac & Linux)
 - IPython Notebook http://ipython.org/notebook.html
 - Please familiarize yourself with it.
 - Python 2.7, IPython 2.2.0
 - Nice to have: Matplotlib
- Python interactive interpreter
- Python scripts

Levels of linguistic structure

Discourse

Semantics

CommunicationEvent(e) SpeakerContext(s)
Agent(e, Alice) TemporalBefore(e, s)
Recipient(e, Bob)

Syntax

Words

Morphology

Characters

7

Levels of linguistic structure

Words are fundamental units of meaning and easily identifiable*

*in some languages

Words

Alice

talked

to

Bob

•

Characters

Alice talked to Bob.

Probability theory

Review: definitions/laws

 $=\sum P(A=a)$ $=\frac{P(AB)}{P(B)}$

Conditional Probability

Chain Rule

= P(A|B)P(B)

Law of Total Probability

$$=\sum_{b} P(A, B=b)$$

$$=\sum_{b}^{b} P(A|B=b)P(B=b)$$

Disjunction (Union)

Negation (Complement)

$$P(\neg A) =$$

 $P(A \vee B) =$

Bayes Rule

Want P(H|D) but only have P(D|H) e.g. H causes D, or P(D|H) is easy to measure...

H: who wrote this document?

Model: authors' word probs

D: words

Bayesian inference

Rev.Thomas Bayes c. 1701-1761

Bayes Rule and its pesky denominator

$$P(h|d) = \frac{1}{Z}P(d|h)P(h)$$

Z: whatever lets the posterior, when summed across h, to sum to I Zustandssumme, "sum over states"

$$P(h|d) \propto P(d|h)P(h)$$

Unnormalized posterior By itself does not sum to 1!

"Proportional to"
(implicitly for varying H.
This notation is very common, though slightly ambiguous.)

Bayes Rule: Discrete

Sum to 1?

$$P(H = h)$$
 Prior

Yes

$$P(E|H=h)$$

No

Likelihood

$$P(E|H=h)P(H=h)$$
 No Unnorm. Posterior

$$\frac{1}{Z}P(E|H=h)P(H=h) \quad \text{Yes}$$
 Posterior

Bayes Rule: Discrete, uniform prior

Bayes Rule for doc classification

	abracadabra	gesundheit
Anna	5 per 1000 words	6 per 1000 words
Barry	10 per 1000 words	1 per 1000 words

Look at random word. It is abracadabra

Assume 50% prior prob Prob author is Anna?

Bayes Rule for doc classification

If we knew
$$P(w|y)$$
 We could estimate
$$P(y|w) \propto P(y)P(w|y)$$

	abracadabra	gesundheit
Anna	5 per 1000 words	6 per 1000 words
Barry	10 per 1000 words	1 per 1000 words

Look at two random words. $w_1 = abracadabra$ $w_2 = gesundheit$

Assume 50% prior prob Prob author is Anna?

Bayes Rule for doc classification

If we knew
$$P(w|y)$$
 We could estimate
$$P(y|w) \propto P(y)P(w|y)$$

	abracadabra	gesundheit
Anna	5 per 1000 words	6 per 1000 words
Barry	10 per 1000 words	1 per 1000 words

Look at two random words. $w_1 = abracadabra$ $w_2 = gesundheit$

Chain rule:

 $P(w_1, w_2 | y) = P(w_1 | w_2 y) P(w_2 | y)$ ASSUME conditional independence: $P(w_1, w_2 | y) = P(w_1 | y) P(w_2 | y)$

Assume 50% prior prob Prob author is Anna?

Cond indep. assumption: "Naive Bayes"

Generative story ("Multinom NB" [McCallum & Nigam 1998]):

each $w_t \in 1..V$ V = vocabulary size

- For each token t in the document,
- Author chooses a word
 by rolling the same weighted V-sided die
 This model is wrong!

How can it possibly be useful for doc classification?

Noisy channel model

Codebreaking

P(plaintext | encrypted text) \propto P(encrypted text | plaintext) P(plaintext)

Bletchley Park (WWII)

Enigma machine

Noisy channel model

Codebreaking

P(plaintext | encrypted text) \propto P(encrypted text | plaintext) P(plaintext)

Speech recognition

P(text | acoustic signal) \propto P(acoustic signal | text) P(text)

Noisy channel model

Codebreaking

P(plaintext | encrypted text) \propto P(encrypted text | plaintext) P(plaintext)

Speech recognition

P(text | acoustic signal) \propto P(acoustic signal | text) P(text)

Optical character recognition

P(text | image)

 \propto P(image | text) P(text)

SI ENSAYARA COMO

Tanto peor, lo mejor es la fiesta, si se puede. No hay ver en las fiestas a jóvenes

Noisy channel model

Codebi P(plaintex

Speech

P(text | a

Optical P(text | ir

One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

-- Warren Weaver (1955)

text)

Noisy channel model

Codebreaking

P(plaintext | encrypted text) \propto P(encrypted text | plaintext) P(plaintext)

Speech recognition

P(text | acoustic signal) \propto P(acoustic signal | text) P(text)

Optical character recognition

P(text | image)

 \propto P(image | text) P(text)

Machine translation?

P(target text | source text) \propto P(source text | target text) P(target text)