
Sequence Labeling (IV)
Viterbi and Struct. Perceptron/SVM

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, March 29, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

• Local Markovian assumptions => efficient dynamic
programming inference

• P(w): Likelihood (only generative model)

• Forward algorithm

• P(ym | w): Predicted tag marginals

• Forward-Backward algorithm

• for EM for unsup HMM .. gradients for sup CRF .. or direct
usage in applications (e.g. high recall noun finder: get all
with >=20% prob)

• P(y | w): Predicted sequence (“decoding”)

• Viterbi algorithm
2

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w

1:M

= (w
1

, w
2

, . . . , w
M

), there is a set of possible taggings Y(w
1:M

) =
YM , where Y = {N, V, D, . . .} refers to the set of individual tags, and YM refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w

1:M

),

ŷ

1:M

= argmax
y1:M2Y(w1:M)

✓

>
f(w

1:M

,y
1:M

), (6.7)

where y

1:M

= (y
1

, y
2

, . . . , y
M

) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y

1:M

. Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w
1

, . . . , w
M

,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w

1:M

)| ⇡ 1020, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, y
m

, m), (6.8)

where we use the shorthand w , w

1:M

. The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

HMM CRF
p(y | w) / exp

X

c

✓Tfc(w,yc)

!c = pairs of RVs

Thursday, March 29, 18

Viterbi

• Max-product belief propagation, analogous to
forward-backward as sum-product BP

• Key idea: summarize the maximal prefix path so
far ... up to all possibilities for the next to last
state

• Why not select a single best path so far?

• Viterbi worksheet!

3

Thursday, March 29, 18

Structured Perceptron
• Viterbi is very common for decoding. Inconvenient

that you also need forward-backward for CRF
learning

• Collins 2002: actually you can directly train only
using Viterbi: structured perceptron
• Theoretical results hold from the usual perceptron...

• Important extension in NLP: Structured SVM
• a.k.a. Structured large-margin/hinge-loss

energy network
a.k.a. Cost-augmented perceptron

• SP, SSVM, CRF training are variants of highly related
objective functions and SSGD updates

4

Thursday, March 29, 18

Questions

• Linear separability and convergence proofs
important?

• Issues in MaxEnt and other comparisons?

• Regularization

• My reading of the literature: SPs typically have
similar performance as CRFs

• Significance tests?

5

Thursday, March 29, 18

Comparisons
• CRF vs. SP/SSVM

• Only need an argmax decoder. Don’t need to calculate the
normalizer.

• Sometimes algorithms are fundamentally similar (Markov models:
FB~Viterbi) but sometimes very different (e.g. graph matching: often sum/
counting is #P-complete but argmax is polynomial)

• Use tools from discrete optimization (e.g. off-the-shelf ILP decoders,
typically using simplex and interior point .. or other algorithms, e.g.
(alternating direction) dual decomposition)

• (What if dynamic programming doesn’t work?)

• Latent variables ~basically work better in a probabilistic framework

• SP vs. SSVM

• Averaging vs. Regularization

• Cost function: can customize (e.g. FP vs FN tradeoffs)

• SVM/Hinge and CRF/LL work better for neural networks
(see LeCun et al. 2016, A Tutorial on Energy-Based Learning)

• CRF and SSVM most common today; use the SP if you’re
implementing yourself, at least to get started!

6

Thursday, March 29, 18

http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf
http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf

Structured Pred. and NNs

• Tradeoffs

• Complex output model + simple input model?
(CRF and linear features)
vs.

• Simple output model + complex input model?
(Indiv. classifier with LSTM “features”)

• Can combine both! (e.g. BiLSTM-CRF)

• Alternate view: RNNs are alternative to
probabilistic model-based message passing

• Alternate use: NNs for inference

7

Thursday, March 29, 18

