
Sequence Labeling (III)
Conditional Random Fields

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, March 27, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

How to build a POS tagger?

• Sources of information:

• POS tags of surrounding words:
syntactic context

• The word itself

• Features, etc.!

• Word-internal information

• Features from surrounding words

• External lexicons

• Embeddings, LSTM states

2

HMM

Classifier

CRF

Tuesday, March 27, 18

• Efficiently supports operations via dynamic
programming –
because of local (Markovian) assumptions
• P(w): Likelihood (generative model)

• Forward algorithm

• P(y | w): Predicted sequence (“decoding”)

• Viterbi algorithm

• P(ym | w): Predicted tag marginals

• Forward-Backward algorithm

• Supports EM for unsupervised HMM learning
3

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w

1:M

= (w
1

, w
2

, . . . , w
M

), there is a set of possible taggings Y(w
1:M

) =
YM , where Y = {N, V, D, . . .} refers to the set of individual tags, and YM refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w

1:M

),

ŷ

1:M

= argmax
y1:M2Y(w1:M)

✓

>
f(w

1:M

,y
1:M

), (6.7)

where y

1:M

= (y
1

, y
2

, . . . , y
M

) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y

1:M

. Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w
1

, . . . , w
M

,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w

1:M

)| ⇡ 1020, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, y
m

, m), (6.8)

where we use the shorthand w , w

1:M

. The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Example: the Hidden Markov model

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

Tuesday, March 27, 18

4

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w

1:M

= (w
1

, w
2

, . . . , w
M

), there is a set of possible taggings Y(w
1:M

) =
YM , where Y = {N, V, D, . . .} refers to the set of individual tags, and YM refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w

1:M

),

ŷ

1:M

= argmax
y1:M2Y(w1:M)

✓

>
f(w

1:M

,y
1:M

), (6.7)

where y

1:M

= (y
1

, y
2

, . . . , y
M

) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y

1:M

. Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w
1

, . . . , w
M

,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w

1:M

)| ⇡ 1020, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, y
m

, m), (6.8)

where we use the shorthand w , w

1:M

. The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Example: the Hidden Markov model

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

• Today: Conditional Random Fields

p(y | w) =

exp(✓Tf(w1:M ,y1:M))P
y0
1:M2Y(w1:M) exp(✓

Tf(w1:M ,y0
1:M))

* for carefully chosen f

Tuesday, March 27, 18

5

A1

y1 y2 y3

A2

B1 B2 B3

Bt(yt)G(y)
goodness emission factor score transition factor score

Decoding problem
(Viterbi algorithm)

log p(y, w) =
X

t

log p(wt|yt) + log p(yt|yt�1)

arg max

y

⇤2outputs(x)
G(y⇤)

HMM as log-linear

p(y, w) =
Y

t

p(wy|yt) p(yt|yt�1)

pair factor score

A(yt�1, yt)

log p(y, w) =
X

t

�t(yt�1, yt)

Tuesday, March 27, 18

HMM as log-linear

• HMM as a joint log-linear model

6

P (y, w) =
Y

t

P (yt | yt�1)P (wt | yt)

P (y | w) / exp(✓Tf(y, w))

f(y, w) =
X

t

f(yt�1, yt, wt)

• This implies the conditional is also log-linear

Local features only!
(Allows efficient inference)

P (y, w) = exp(✓Tf(y, w))

e.g. {(N,V):1, (V,dog):1}
What are the weights?

Tuesday, March 27, 18

From HMMs to CRFs

• 1. Discriminative learning: take HMM
features, but set weights to maximize conditional
LL of labels

• 2. More features: affix, positional, feature
templates, embeddings, etc.

• For efficient inference: make sure to preserve
Markovian structure within the feature
function (e.g. first-order CRF)

7

Tuesday, March 27, 18

• Gradient descent on negative conditional LL
• Log-linear gradient:

sum over all possible predicted structures
(Forward-Backward for marginalization)

• Non-probabilistic losses: compare gold
structure to only one predicted structure

• Structured perceptron algorithm:
Collins, 2002 (just got Test of Time award)

• Structured SVM (hinge loss)

• (Viterbi for best-structure)

8

Learning a CRF

Tuesday, March 27, 18

Learning a CRF: max CLL

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, March 27, 18

Learning a CRF: max CLL

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, March 27, 18

Learning a CRF: max CLL

=
X

t

0

@fj(yt�1, yt, wt)�
X

y0
t,y

0
t�1

p✓(y
0
t�1, y

0
t | w)fj(y0t�1, y

0
t, wt)

1

A

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, March 27, 18

Learning a CRF: max CLL

=
X

t

0

@fj(yt�1, yt, wt)�
X

y0
t,y

0
t�1

p✓(y
0
t�1, y

0
t | w)fj(y0t�1, y

0
t, wt)

1

A

• Apply local decomposition

log p✓(y | w) = ✓Tf(y, w)� log

X

y0

exp(✓Tf(y, w))

Real feature value Expected feature value

Tag marginals (to compute: forward-backward)

=

X

t

fj(yt�1, yt, wt)

!
�
X

y0

p✓(y
0 | w)

X

t

fj(y
0
t�1, y

0
t, wt)

@ log p✓(...)

@✓j
= fj(y, w)�

X

y0

p✓(y
0 | w)fj(y0, w)

Tuesday, March 27, 18

• stopped here 3/27

10

Tuesday, March 27, 18

(Log?-)linear Viterbi

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 107

0 they can fish -10

N -3 -9 -9

V -12 -5 -11

Figure 6.1: The trellis representation of the Viterbi variables, for the example they can fish,
using the weights shown in Table 6.1.

Our real goal is to find the best scoring sequence, not simply to compute its score. But
as is often the case in dynamic programming, solving the auxiliary problem gets us almost
all the way to our original goal. Recall that each v

m

(k) represents the score of the best tag
sequence ending in that tag k in position m. To compute this, we maximize over possible
values of y

m�1

. If we keep track of the tag that maximizes this choice at each step, then
we can walk backwards from the final tag, and recover the optimal tag sequence. This is
indicated in Figure 6.1 by the solid blue lines, which we trace back from the final position.

Why does this work? We can make an inductive argument. Suppose k is indeed the
optimal tag for word m, and we now need to decide on the tag y

m�1

. Because we make the
inductive assumption that we know y

m

= k, and because the feature function is restricted
to adjacent tags, we need not consider any of the tags y

m+1:M

; these tags, and the features
that describe them, are irrelevant to the inference of y

m�1

, given that we have y
m

= k.
Thus, we are looking for the tag ŷ

m�1

that maximizes,

ŷ
m�1

= argmax
y

m�1

✓

>
f(w, k, y

m�1

, m) + max
y1:m�2

m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.28)

= argmax
y

m�1

✓

>
f(w, k, y

m�1

, m) + v
m�1

(y
m�1

), (6.29)

which we obtain by plugging in the definition of the Viterbi variable. The value ŷ
m�1

was
identified during forward pass, when computing the value of the Viterbi variable v

m

(k).
The complete Viterbi algorithm is shown in Algorithm 7. This formalizes the recur-

rences that were described in the previous paragraphs, and handles the boundary condi-
tions at the start and end of the sequence. Specifically, when computing the initial Viterbi
variables v

1

(·), we use a special tag, ⌃, to indicate the start of the sequence. When com-
puting the final tag Y

M

, we use another special tag, ⌥, to indicate the end of the sequence.
These special tags enable the use of transition features for the tags that begin and end

(c) Jacob Eisenstein 2014-2017. Work in progress.

108 CHAPTER 6. SEQUENCE LABELING

they can fish

N �2 �3 �3
V �10 �1 �3

(a) Weights for emission features.

N V ⌥
⌃ �1 �2 �1
N �3 �1 �12
V �1 �3 �1

(b) Weights for transition features. The
“from” tags are on the columns, and the “to”
tags are on the rows.

Table 6.1: Feature weights for the example trellis shown in Figure 6.1. Emission weights
from ⌃ and ⌥ are implicitly set to �1.

the sequence: for example, conjunctions are unlikely to end sentences in English, so we
would like a large negative weight for the feature hCC,⌥i; nouns are relatively likely to
appear at the beginning of sentences, so we would like a more positive (or less negative)
weight for the feature h⌃, Ni.

What is the complexity of this algorithm? If there are K tags and M positions in the
sequence, then there are M ⇥ K Viterbi variables to compute. Computing each variable
requires finding a maximum over K possible predecessor tags. The total computation
cost of populating the trellis is therefore O(MK2), with an additional factor for the num-
ber of active features at each position. After completing the trellis, we simply trace the
backwards pointers to the beginning of the sequence, which takes O(M) operations.

Example

We now illustrate the Viterbi algorithm with an example, using the minimal tagset {N, V},
corresponding to nouns and verbs. Even in this tagset, there is considerable ambiguity:
consider the words can and fish, which can each take both tags. Of the 2 ⇥ 2 ⇥ 2 = 8
possible taggings for the sentence they can fish, four are possible given the words’ possible
tags, and two are grammatical. (The tagging they/N can/V fish/N corresponds to the
scenario of putting fish into cans.)

To begin, we use the feature weights defined in Table 6.1. These weights are used to
incrementally fill in the trellis. As described in Algorithm 7, we fill in the cells from left to
right, with each column corresponding to a word in the sequence. As we fill in the cells,
we must keep track of the “back-pointers” b

m

(k) — the previous cell that maximizes the
score of tag k at word m. These are represented in the figure with the thick blue lines. At
the end of the algorithm, we recover the optimal tag sequence by tracing back the optimal
path from the final position, (M + 1,⌥).

(c) Jacob Eisenstein 2014-2017. Work in progress.

108 CHAPTER 6. SEQUENCE LABELING

they can fish

N �2 �3 �3
V �10 �1 �3

(a) Weights for emission features.

N V ⌥
⌃ �1 �2 �1
N �3 �1 �12
V �1 �3 �1

(b) Weights for transition features. The
“from” tags are on the columns, and the “to”
tags are on the rows.

Table 6.1: Feature weights for the example trellis shown in Figure 6.1. Emission weights
from ⌃ and ⌥ are implicitly set to �1.

the sequence: for example, conjunctions are unlikely to end sentences in English, so we
would like a large negative weight for the feature hCC,⌥i; nouns are relatively likely to
appear at the beginning of sentences, so we would like a more positive (or less negative)
weight for the feature h⌃, Ni.

What is the complexity of this algorithm? If there are K tags and M positions in the
sequence, then there are M ⇥ K Viterbi variables to compute. Computing each variable
requires finding a maximum over K possible predecessor tags. The total computation
cost of populating the trellis is therefore O(MK2), with an additional factor for the num-
ber of active features at each position. After completing the trellis, we simply trace the
backwards pointers to the beginning of the sequence, which takes O(M) operations.

Example

We now illustrate the Viterbi algorithm with an example, using the minimal tagset {N, V},
corresponding to nouns and verbs. Even in this tagset, there is considerable ambiguity:
consider the words can and fish, which can each take both tags. Of the 2 ⇥ 2 ⇥ 2 = 8
possible taggings for the sentence they can fish, four are possible given the words’ possible
tags, and two are grammatical. (The tagging they/N can/V fish/N corresponds to the
scenario of putting fish into cans.)

To begin, we use the feature weights defined in Table 6.1. These weights are used to
incrementally fill in the trellis. As described in Algorithm 7, we fill in the cells from left to
right, with each column corresponding to a word in the sequence. As we fill in the cells,
we must keep track of the “back-pointers” b

m

(k) — the previous cell that maximizes the
score of tag k at word m. These are represented in the figure with the thick blue lines. At
the end of the algorithm, we recover the optimal tag sequence by tracing back the optimal
path from the final position, (M + 1,⌥).

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

Score of best
sequence ending in k

106 CHAPTER 6. SEQUENCE LABELING

Algorithm 7 The Viterbi algorithm.
for k 2 {0, . . . K} do

v
1

(k) = ✓

>
f(w, k,⌃, m)

for m 2 {2, . . . , M} do
for k 2 {0, . . . , K} do

v
m

(k) = max
k

0
✓

>
f(w, k, k0, m) + v

m�1

(k0)
b
m

(k) = argmax
k

0 ✓
>
f(w, k, k0, m) + v

m�1

(k0)

y
M

= argmax
k

v
M

(k) + ✓

>
f(w,⌥, k, M + 1)

for m 2 {M � 1, . . . 1} do
y
m

= b
m

(y
m+1

)

return y

1:M

where lower-case m indicates any position in the sequence, and k 2 Y indicates a tag for
that position. The variable v

m

(k) represents the score of the best tag sequence (ŷ
1

, ŷ
2

, . . . , ŷ
m

)
that terminates in ŷ

m

= k. From this definition, we can compute the score of the best tag-
ging of the sequence by plugging the Viterbi variables v

M

(·) into Equation 6.21,

max
y

✓

>
f(w,y) = max

k

v
M

(k). (6.23)

Now, let us look more closely at how we can compute these Viterbi variables.

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.24)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m)

+ max
y1:m�2

✓

>
f(w, y

m�1

, y
m�2

) +

m�2X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.25)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m) + v
m�1

(y
m�1

) (6.26)

v
1

(y) =✓

>
f(w, y,⌃, 1). (6.27)

Equation 6.26 is a recurrence for computing the Viterbi variables: each v
m

(k) can be com-
puted in terms of v

m�1

(·), and so on. We can therefore step forward through the sequence,
computing first all variables v

1

(·) from Equation 6.27, and then computing all variables
v
2

(·), v
3

(·), and so on, until we reach the final set of variables v
M

(·).
Graphically, it is customary to arrange these variables in a matrix, with the sequence

index m on the columns, and the tag index k on the rows. In this representation, each
v
m�1

(k) is connected to each v
m

(k0), forming a trellis, as shown in Figure 6.1. As shown
in the figure, special nodes are set aside for the start and end states.

(c) Jacob Eisenstein 2014-2017. Work in progress.

106 CHAPTER 6. SEQUENCE LABELING

Algorithm 7 The Viterbi algorithm.
for k 2 {0, . . . K} do

v
1

(k) = ✓

>
f(w, k,⌃, m)

for m 2 {2, . . . , M} do
for k 2 {0, . . . , K} do

v
m

(k) = max
k

0
✓

>
f(w, k, k0, m) + v

m�1

(k0)
b
m

(k) = argmax
k

0 ✓
>
f(w, k, k0, m) + v

m�1

(k0)

y
M

= argmax
k

v
M

(k) + ✓

>
f(w,⌥, k, M + 1)

for m 2 {M � 1, . . . 1} do
y
m

= b
m

(y
m+1

)

return y

1:M

where lower-case m indicates any position in the sequence, and k 2 Y indicates a tag for
that position. The variable v

m

(k) represents the score of the best tag sequence (ŷ
1

, ŷ
2

, . . . , ŷ
m

)
that terminates in ŷ

m

= k. From this definition, we can compute the score of the best tag-
ging of the sequence by plugging the Viterbi variables v

M

(·) into Equation 6.21,

max
y

✓

>
f(w,y) = max

k

v
M

(k). (6.23)

Now, let us look more closely at how we can compute these Viterbi variables.

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.24)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m)

+ max
y1:m�2

✓

>
f(w, y

m�1

, y
m�2

) +

m�2X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.25)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m) + v
m�1

(y
m�1

) (6.26)

v
1

(y) =✓

>
f(w, y,⌃, 1). (6.27)

Equation 6.26 is a recurrence for computing the Viterbi variables: each v
m

(k) can be com-
puted in terms of v

m�1

(·), and so on. We can therefore step forward through the sequence,
computing first all variables v

1

(·) from Equation 6.27, and then computing all variables
v
2

(·), v
3

(·), and so on, until we reach the final set of variables v
M

(·).
Graphically, it is customary to arrange these variables in a matrix, with the sequence

index m on the columns, and the tag index k on the rows. In this representation, each
v
m�1

(k) is connected to each v
m

(k0), forming a trellis, as shown in Figure 6.1. As shown
in the figure, special nodes are set aside for the start and end states.

(c) Jacob Eisenstein 2014-2017. Work in progress.

106 CHAPTER 6. SEQUENCE LABELING

Algorithm 7 The Viterbi algorithm.
for k 2 {0, . . . K} do

v
1

(k) = ✓

>
f(w, k,⌃, m)

for m 2 {2, . . . , M} do
for k 2 {0, . . . , K} do

v
m

(k) = max
k

0
✓

>
f(w, k, k0, m) + v

m�1

(k0)
b
m

(k) = argmax
k

0 ✓
>
f(w, k, k0, m) + v

m�1

(k0)

y
M

= argmax
k

v
M

(k) + ✓

>
f(w,⌥, k, M + 1)

for m 2 {M � 1, . . . 1} do
y
m

= b
m

(y
m+1

)

return y

1:M

where lower-case m indicates any position in the sequence, and k 2 Y indicates a tag for
that position. The variable v

m

(k) represents the score of the best tag sequence (ŷ
1

, ŷ
2

, . . . , ŷ
m

)
that terminates in ŷ

m

= k. From this definition, we can compute the score of the best tag-
ging of the sequence by plugging the Viterbi variables v

M

(·) into Equation 6.21,

max
y

✓

>
f(w,y) = max

k

v
M

(k). (6.23)

Now, let us look more closely at how we can compute these Viterbi variables.

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.24)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m)

+ max
y1:m�2

✓

>
f(w, y

m�1

, y
m�2

) +

m�2X

n=1

✓

>
f(w, y

n

, y
n�1

, n) (6.25)

= max
y

m�1
✓

>
f(w, k, y

m�1

, m) + v
m�1

(y
m�1

) (6.26)

v
1

(y) =✓

>
f(w, y,⌃, 1). (6.27)

Equation 6.26 is a recurrence for computing the Viterbi variables: each v
m

(k) can be com-
puted in terms of v

m�1

(·), and so on. We can therefore step forward through the sequence,
computing first all variables v

1

(·) from Equation 6.27, and then computing all variables
v
2

(·), v
3

(·), and so on, until we reach the final set of variables v
M

(·).
Graphically, it is customary to arrange these variables in a matrix, with the sequence

index m on the columns, and the tag index k on the rows. In this representation, each
v
m�1

(k) is connected to each v
m

(k0), forming a trellis, as shown in Figure 6.1. As shown
in the figure, special nodes are set aside for the start and end states.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Tuesday, March 27, 18

