Sequence Labeling (11)

CS 690N, Spring 2018

Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Thursday, March 8, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

How to build a POS tagger?

® Sources of information:

® POS tags of surrounding words:
syntactic context

® T[he word itself

® Features, etc.!
Word-internal information

Features from surrounding words

External lexicons
Embeddings, LSTM states

~—HMM

<« (Classifier

—CRF

Thursday, March 8, 18

Sequence labeling

® Seq.labeling as classification:
Each position m gets an independent classification,
as a log-linear model.

P(Ym | w1..wp)
arg max 0' f((w, m),y)
Y

f((w = they can fish, m = 1), N) =(they, N)
f((w = they can fish,m = 2),V) =(can, V)
f ((w = they can fish,m = 3),V) =(fish, V).

Thursday, March 8, 18

Sequence labeling

® Seq.labeling as classification:
Each position m gets an independent classification,
as a log-linear model.

P(Ym | w1..wp)
arg max 0' f((w, m),y)
Y

f((w = they can fish, m = 1), N) =(they, N)
f((w = they can fish,m = 2),V) =(can, V)
f ((w = they can fish,m = 3),V) =(fish, V).

® But syntactic (tag) context is sometimes
necessary!

Thursday, March 8, 18

® Seq.labeling as log-linear structured prediction

g1.v = argmax 0 f(wi.r, Y1),
yl:MEy(wliM)

® Example: the Hidden Markov model

p(w.y) =][p(e | yr—1)p(w; | y2)

® Efficiently supports operations via dynamic
programming —
because of local (Markovian) assumptions
® P(w): Likelihood (generative model)

® Forward algorithm

® P(y| w): Predicted sequence (“decoding”)
® Viterbi algorithm

® P(ym | w): Predicted tag marginals
® Forward-Backward algorithm

® Supports EM for unsupervised HMM learning
4

Thursday, March 8, 18

Forward-Backward

® (handout)
® stopped 3/8 at the forward algorithm

Thursday, March 8, 18

Baum-Welch

® EM applied to HMMs
(where EM was really invented...)

e E-step: calculate marginals with forward-
backward

® p(yelye| wi.wr)
® p(y:|wi.wr)
e M-step: re-estimate parameters from
expected counts
® Transitions: will use pair marginals
® Emissions: will use tag marginals

Thursday, March 8, 18

Viterbi algorithm

® |[f the feature function decomposes into local
features, dynamic programming gives global solution

A

M
Yy :argglax HT.f(w7 y) f(way) — Z f(waymvym—lam)'
m=1

® Decompose:

M
max HTf(way) — Inax Z HTf(waymaym—lam)
Yy Yi:m 1

® DefineViterbi variables:

Yi.m—1

m—1
vm(k) = max OTf(’UJ, kaym—lam) + Z HTf(waynvyn—lan)
n=1

7

Thursday, March 8, 18

Viterbi algorithm

® |[f the feature function decomposes into local
features, dynamic programming gives global solution
M

A

Yy :argglax HT.f(w7 y) f(way) — Z f(waymvym—lam)'

° Decompose

max 6 f(w,y) = max Z 0" f(w, ym, Ym-1,m)
Yy Yi:Mm

:maXHTf(w,yM,yM_l, ‘|‘ Z HT 7ym7ym—17m)

Yi1.m

® DefineViterbi variables:

Vm (k) £ max OTf(wa k,Ym—1,m) + Z HTf(waynayn—lan)

Yi.m—1

7

Thursday, March 8, 18

Viterbi algorithm

® |[f the feature function decomposes into local
features, dynamic programming gives global solution
M

A

Yy :argglax HT.f(w7 y) f(way) — Z f(wvymvym—lam)'

° Decompose°

max 6 f(w,y) =max Z 0" f(w, Y, Ym—1,m)
Yy Yi:m

:maXHTf(w,yM,yM_l, ‘|‘ Z HT 7ymaym 1, M)

Yi:.

— o' eT

— max max f(fw,yM,yM_l,) + max (W, Y, Ym—1,M).
YMmM Ym-—1 Yi:Mm— 2

® DefineViterbi variables:

Vm (k) £ max OTf(wa k,Ym—1,m) + Z HTf(waynayn—lan)

Yi.m—1

7

Thursday, March 8, 18

