
Sequence Labeling (II)

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, March 8, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

How to build a POS tagger?

• Sources of information:

• POS tags of surrounding words:
syntactic context

• The word itself

• Features, etc.!

• Word-internal information

• Features from surrounding words

• External lexicons

• Embeddings, LSTM states

2

HMM

Classifier

CRF

Thursday, March 8, 18

Sequence labeling
• Seq. labeling as classification:

Each position m gets an independent classification,
as a log-linear model.

3

Chapter 6

Sequence labeling

In sequence labeling, we want to assign tags to words, or more generally, we want to
assign discrete labels to elements in a sequence. There are many applications of sequence
labeling in natural language processing, and chapter 7 presents an overview. One of the
most classic application of sequence labeling is part-of-speech tagging, which involves
tagging each word by its grammatical category. Coarse-grained grammatical categories
include NOUNs, which describe things, properties, or ideas, and VERBs, which describe
actions and events. Given a simple sentence like,

(6.1) They can fish.

we would like to produce the tag sequence N V V, with the modal verb can labeled as a
verb in this simplified example.

6.1 Sequence labeling as classification

One way to solve tagging problems is to treat them as classification. We can write f((w, m), y)
to indicate the feature function for applying tag y to word w

m

in the sequence w
1

, w
2

, . . . , w
M

.
A simple tagging model would have a single base feature, the word itself:

f((w = they can fish, m = 1), N) =hthey, Ni (6.1)
f((w = they can fish, m = 2), V) =hcan, Vi (6.2)
f((w = they can fish, m = 3), V) =hfish, Vi. (6.3)

Here the feature function takes three arguments as input: the sentence to be tagged (they
can fish in all cases), the proposed tag (e.g., N or V), and the word token to which this tag
is applied. This simple feature function then returns a single feature: a tuple including
the word to be tagged and the tag that has been proposed. If the vocabulary size is V
and the number of tags is K, then there are V ⇥ K features. Each of these features must

101

argmax

y
✓Tf((w,m), y)

p(ym | w1..wn)

Thursday, March 8, 18

Sequence labeling
• Seq. labeling as classification:

Each position m gets an independent classification,
as a log-linear model.

3

Chapter 6

Sequence labeling

In sequence labeling, we want to assign tags to words, or more generally, we want to
assign discrete labels to elements in a sequence. There are many applications of sequence
labeling in natural language processing, and chapter 7 presents an overview. One of the
most classic application of sequence labeling is part-of-speech tagging, which involves
tagging each word by its grammatical category. Coarse-grained grammatical categories
include NOUNs, which describe things, properties, or ideas, and VERBs, which describe
actions and events. Given a simple sentence like,

(6.1) They can fish.

we would like to produce the tag sequence N V V, with the modal verb can labeled as a
verb in this simplified example.

6.1 Sequence labeling as classification

One way to solve tagging problems is to treat them as classification. We can write f((w, m), y)
to indicate the feature function for applying tag y to word w

m

in the sequence w
1

, w
2

, . . . , w
M

.
A simple tagging model would have a single base feature, the word itself:

f((w = they can fish, m = 1), N) =hthey, Ni (6.1)
f((w = they can fish, m = 2), V) =hcan, Vi (6.2)
f((w = they can fish, m = 3), V) =hfish, Vi. (6.3)

Here the feature function takes three arguments as input: the sentence to be tagged (they
can fish in all cases), the proposed tag (e.g., N or V), and the word token to which this tag
is applied. This simple feature function then returns a single feature: a tuple including
the word to be tagged and the tag that has been proposed. If the vocabulary size is V
and the number of tags is K, then there are V ⇥ K features. Each of these features must

101

• But syntactic (tag) context is sometimes
necessary!

argmax

y
✓Tf((w,m), y)

p(ym | w1..wn)

Thursday, March 8, 18

• Efficiently supports operations via dynamic
programming –
because of local (Markovian) assumptions
• P(w): Likelihood (generative model)

• Forward algorithm

• P(y | w): Predicted sequence (“decoding”)

• Viterbi algorithm

• P(ym | w): Predicted tag marginals

• Forward-Backward algorithm

• Supports EM for unsupervised HMM learning
4

• Seq. labeling as log-linear structured prediction

6.2. SEQUENCE LABELING AS STRUCTURE PREDICTION 103

between a determiner and a verb, and must be a noun. And indeed, adjectives can often
have a second interpretation as nouns when used in this way (e.g., the young, the restless).
This reasoning, in which the labeling decisions are intertwined, cannot be applied in a
setting where each tag is produced by an independent classification decision.

6.2 Sequence labeling as structure prediction

As an alternative, we can think of the entire sequence of tags as a label itself. For a given
sequence of words w

1:M

= (w
1

, w
2

, . . . , w
M

), there is a set of possible taggings Y(w
1:M

) =
YM , where Y = {N, V, D, . . .} refers to the set of individual tags, and YM refers to the
set of tag sequences of length M . We can then treat the sequence labeling problem as a
classification problem in the label space Y(w

1:M

),

ŷ

1:M

= argmax
y1:M2Y(w1:M)

✓

>
f(w

1:M

,y
1:M

), (6.7)

where y

1:M

= (y
1

, y
2

, . . . , y
M

) is a sequence of M tags. Note that in this formulation, we
have a feature function that consider the entire tag sequence y

1:M

. Such a feature function
can therefore include features that capture the relationships between tagging decisions,
such as the preference that determiners not follow nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence w
1

, . . . , w
M

,
can it ever be practical to perform tagging in this way? The problem of making a series of
interconnected labeling decisions is known as inference. Because natural language is full
of interrelated grammatical structures, inference is a crucial aspect of contemporary natu-
ral language processing. In English, it is not unusual to have sentences of length M = 20;
part-of-speech tag sets vary in size from 10 to several hundred. Taking the low end of this
range, we have #|Y(w

1:M

)| ⇡ 1020, one hundred billion billion possible tag sequences.
Enumerating and scoring each of these sequences would require an amount of work that
is exponential in the sequence length; in other words, inference is intractable.

However, the situation changes when we restrict the feature function. Suppose we
choose features that never consider more than one tag. We can indicate this restriction as,

f(w,y) =

MX

m=1

f(w, y
m

, m), (6.8)

where we use the shorthand w , w

1:M

. The summation in (6.8) means that the overall
feature vector is the sum of feature vectors associated with each individual tagging deci-
sion. These features are not capable of capturing the intuitions that might help us solve
garden path sentences, such as the insight that determiners rarely follow nouns in En-
glish. But this restriction does make it possible to find the globally optimal tagging, by

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Example: the Hidden Markov model

p(w,y) =
Y

t

p(yt | yt�1)p(wt | yt)

Thursday, March 8, 18

Forward-Backward
• (handout)

• stopped 3/8 at the forward algorithm

5

Thursday, March 8, 18

Baum-Welch

• EM applied to HMMs
(where EM was really invented...)

• E-step: calculate marginals with forward-
backward

• p(yt-1, yt | w1..wT)

• p(yt | w1..wT)

• M-step: re-estimate parameters from
expected counts
• Transitions: will use pair marginals

• Emissions: will use tag marginals

6

Thursday, March 8, 18

Viterbi algorithm
• If the feature function decomposes into local

features, dynamic programming gives global solution

7

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Decompose:

• Define Viterbi variables:

Thursday, March 8, 18

Viterbi algorithm
• If the feature function decomposes into local

features, dynamic programming gives global solution

7

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Decompose:

• Define Viterbi variables:

Thursday, March 8, 18

Viterbi algorithm
• If the feature function decomposes into local

features, dynamic programming gives global solution

7

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

6.3. THE VITERBI ALGORITHM 105

for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, we can expect to make the right tagging decisions, even for
difficult cases like the old man the boat.

The example shows that even with the restriction to the feature set shown in Equa-
tion 6.13, it is still possible to construct expressive features that are capable of solving
many sequence labeling problems. But the key question is: does this restriction make it
possible to perform efficient inference? The answer is yes, and the solution is the Viterbi
algorithm (Viterbi, 1967).

6.3 The Viterbi algorithm

We now consider the inference problem,

ŷ = argmax
y

✓

>
f(w,y) (6.17)

f(w,y) =

MX

m=1

f(w, y
m

, y
m�1

, m). (6.18)

Given this restriction on the feature function, we can solve this inference problem us-
ing dynamic programming, a algorithmic technique for reusing work in recurrent com-
putations. As is often the case in dynamic programming, we begin by solving an auxiliary
problem: rather than finding the best tag sequence, we simply try to compute the score of
the best tag sequence,

max
y

✓

>
f(w,y) = max

y1:M

MX

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.19)

= max
y1:M

✓

>
f(w, y

M

, y
M�1

, M) +

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m) (6.20)

= max
y

M

max
y

M�1
✓

>
f(w, y

M

, y
M�1

, M) + max
y1:M�2

M�1X

m=1

✓

>
f(w, y

m

, y
m�1

, m).

(6.21)

In this derivation, we first removed the final element ✓>
f(w, y

M

, y
M�1

, M) from the sum
over the sequence, and then we adjusted the scope of the the max operation, since the
elements (y

1

. . . y
M�2

) are irrelevant to the final term.
Let us now define the Viterbi variable,

v
m

(k) , max
y1:m�1

✓

>
f(w, k, y

m�1

, m) +
m�1X

n=1

✓

>
f(w, y

n

, y
n�1

, n), (6.22)

(c) Jacob Eisenstein 2014-2017. Work in progress.

• Decompose:

• Define Viterbi variables:

Thursday, March 8, 18

