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• Some recent large-scale LSTM LM results (V=793471)
Jozefowicz et al. 2016 https://arxiv.org/pdf/1602.02410.pdf
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Exploring the Limits of Language Modeling

Table 1. Best results of single models on the 1B word benchmark. Our results are shown below previous work.

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]

SIGMOID-RNN-2048 (JI ET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20

LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NO DROPOUT) 37.9 3.3
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INPUTS 30.0 1.04

BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Table 2. Best results of ensembles on the 1B Word Benchmark.

MODEL TEST PERPLEXITY

LARGE ENSEMBLE (CHELBA ET AL., 2013) 43.8
RNN+KN-5 (WILLIAMS ET AL., 2015) 42.4
RNN+KN-5 (JI ET AL., 2015A) 42.0
RNN+SNM10-SKIP (SHAZEER ET AL., 2015) 41.3
LARGE ENSEMBLE (SHAZEER ET AL., 2015) 41.0

OUR 10 BEST LSTM MODELS (EQUAL WEIGHTS) 26.3
OUR 10 BEST LSTM MODELS (OPTIMAL WEIGHTS) 26.1
10 LSTMS + KN-5 (EQUAL WEIGHTS) 25.3
10 LSTMS + KN-5 (OPTIMAL WEIGHTS) 25.1
10 LSTMS + SNM10-SKIP (SHAZEER ET AL., 2015) 23.7

4.4. Training Procedure

The models were trained until convergence with an Ada-
Grad optimizer using a learning rate of 0.2. In all the exper-
iments the RNNs were unrolled for 20 steps without ever
resetting the LSTM states. We used a batch size of 128.
We clip the gradients of the LSTM weights such that their
norm is bounded by 1.0 (Pascanu et al., 2012).

Using these hyper-parameters we found large LSTMs to be
relatively easy to train. The same learning rate was used in
almost all of the experiments. In a few cases we had to re-
duce it by an order of magnitude. Unless otherwise stated,
the experiments were performed with 32 GPU workers and
asynchronous gradient updates. Further details will be fully
specified with the code upon publication.

Training a model for such large target vocabulary (793471
words) required to be careful with some details about the
approximation to full Softmax using importance sampling.

We used a large number of negative (or noise) samples:
8192 such samples were drawn per step, but were shared
across all the target words in the batch (2560 total, i.e. 128
times 20 unrolled steps). This results in multiplying (2560
x 1024) times (1024 x (8192+1)) (instead of (2560 x 1024)
times (1024 x 793471)), i.e. about 100-fold less computa-
tion.

5. Results and Analysis
In this section we summarize the results of our experiments
and do an in-depth analysis. Table 1 contains all results for
our models compared to previously published work. Ta-
ble 2 shows previous and our own work on ensembles of
models. We hope that our encouraging results, which im-
proved the best perplexity of a single model from 51.3 to
30.0 (whilst reducing the model size considerably), and set
a new record with ensembles at 23.7, will enable rapid re-
search and progress to advance Language Modeling. For
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Softmax alternatives

• Vocabulary softmax is often a bottleneck.

• Hierarchical softmax

• Negative (contrastive) sampling for training

• Character models (?)
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Structure awareness
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• LSTMs used as a generic, sequence-aware model 
within language modeling, translation generation, 
classification and tagging

• Various LSTM-analyzing-text visualizations

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• http://lstm.seas.harvard.edu/

• Question: can they learn interactions we know are 
in natural language?

• Thursday: Linzen et al.!
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Syntax in LSTMs

• Can LSTMs capture natural language structure?

• Test in different settings (Linzen et al. 2016)

• Direct supervision (grammatical number 
prediction)

• No supervision (LM)
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• Subject-Verb agreement on grammatical number
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(2) The keys to the cabinet are on the table.

Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).

The keys to the cabinet are on the table

det

nsubj

prep det
pobj

prep det
pobj

root

Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add
nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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indentation in a programming language (Karpathy et
al., 2016). The goal of the present work is to probe
their ability to learn natural language hierarchical
(syntactic) structures from a corpus without syntactic
annotations. As a first step, we focus on a particular
dependency that is commonly regarded as evidence
for hierarchical structure in human language: English
subject-verb agreement, the phenomenon in which
the form of a verb depends on whether the subject
is singular or plural (the kids play but the kid plays;
see additional details in Section 2). If an RNN-based
model succeeded in learning this dependency, that
would indicate that it can learn to approximate or
even faithfully implement syntactic structure.

Our main interest is in whether LSTMs have the
capacity to learn structural dependencies from a nat-
ural corpus. We therefore begin by addressing this
question under the most favorable conditions: train-
ing with explicit supervision. In the setting with the
strongest supervision, which we refer to as the num-
ber prediction task, we train it directly on the task of
guessing the number of a verb based on the words that
preceded it (Sections 3 and 4). We further experiment
with a grammaticality judgment training objective, in
which we provide the model with full sentences an-
notated as to whether or not they violate subject-verb
number agreement, without an indication of the locus
of the violation (Section 5). Finally, we trained the
model without any grammatical supervision, using
a language modeling objective (predicting the next
word).

Our quantitative results (Section 4) and qualitative
analysis (Section 7) indicate that most naturally oc-
curring agreement cases in the Wikipedia corpus are
easy: they can be resolved without syntactic informa-
tion, based only on the sequence of nouns preceding
the verb. This leads to high overall accuracy in all
models. Most of our experiments focus on the super-
vised number prediction model. The accuracy of this
model was lower on harder cases, which require the
model to encode or approximate structural informa-
tion; nevertheless, it succeeded in recovering the ma-
jority of agreement cases even when four nouns of the
opposite number intervened between the subject and
the verb (17% errors). Baseline models failed spec-
tacularly on these hard cases, performing far below
chance levels. Fine-grained analysis revealed that
mistakes are much more common when no overt cues

to syntactic structure (in particular function words)
are available, as is the case in noun-noun compounds
and reduced relative clauses. This indicates that the
number prediction model indeed managed to capture
a decent amount of syntactic knowledge, but was
overly reliant on function words.

Error rates increased only mildly when we
switched to more indirect supervision consisting only
of sentence-level grammaticality annotations without
an indication of the crucial verb. By contrast, the
language model trained without explicit grammati-
cal supervision performed worse than chance on the
harder agreement prediction cases. Even a state-of-
the-art large-scale language model (Jozefowicz et
al., 2016) was highly sensitive to recent but struc-
turally irrelevant nouns, making more than five times
as many mistakes as the number prediction model on
these harder cases. These results suggest that explicit
supervision is necessary for learning the agreement
dependency using this architecture, limiting its plau-
sibility as a model of child language acquisition (El-
man, 1990). From a more applied perspective, this
result suggests that for tasks in which it is desirable to
capture syntactic dependencies (e.g., machine trans-
lation or language generation), language modeling
objectives should be supplemented by supervision
signals that directly capture the desired behavior.

2 Background: Subject-Verb Agreement
as Evidence for Syntactic Structure

The form of an English third-person present tense
verb depends on whether the head of the syntactic
subject is plural or singular:2

(1) a. The key is on the table.
b. *The key are on the table.
c. *The keys is on the table.
d. The keys are on the table.

While in these examples the subject’s head is adjacent
to the verb, in general the two can be separated by
some sentential material:3

2 Identifying the head of the subject is typically straightfor-
ward. In what follows we will use the shorthand “the subject” to
refer to the head of the subject.

3In the examples, the subject and the corresponding verb
are marked in boldface, agreement attractors are underlined and
intervening nouns of the same number as the subject are marked
in italics. Asterisks mark unacceptable sentences.
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may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
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therefore an arbitrary number of words—can appear
between the subject and the verb:
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This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
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have the same number as the subject, as in (4), or the
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Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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• N-grams can’t capture long-distance 
dependencies
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• Use syntactic parser to preprocess data, to generate 
prediction task setup. (Assumes parser is accurate enough)
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Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).
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Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add
nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The potential
presence of agreement attractor entails that the model
must identify the head of the syntactic subject that
corresponds to a given verb in order to choose the
correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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Number prediction

• Task:

• Predict PLURAL or SINGULAR

• Needs to learn “subjecthood” and number

• Unlimited synthetic data (1.3M from Wikipedia: present-tense 
verb uses)

• A simple phenomenon that sometimes needs to deal with a 
little bit of structure

• Models

• LSTM with 50-dim word embeddings, 50-dim hidden states, last 
state for classification

• Noun-only baselines

• Analysis: what affects performance?
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that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).
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to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
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By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add
nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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Good reporting of details
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trated in Section 2, correctly identifying the subject
that corresponds to a particular verb often requires
sensitivity to hierarchical syntax.

Data: An appealing property of the number predic-
tion task is that we can generate practically unlimited
training and testing examples for this task by query-
ing a corpus for sentences with present-tense verbs,
and noting the number of the verb. Importantly, we
do not need to correctly identify the subject in order
to create a training or test example. We generated a
corpus of ⇠1.35 million number prediction problems
based on Wikipedia, of which ⇠121,500 (9%) were
used for training, ⇠13,500 (1%) for validation, and
the remaining ⇠1.21 million (90%) were reserved
for testing.4 The large number of test sentences was
necessary to ensure that we had a good variety of test
sentences representing less common constructions
(see Section 4).5

Model and baselines: We encode words as one-
hot vectors: the model does not have access to the
characters that make up the word. Those vectors are
then embedded into a 50-dimensional vector space.
An LSTM with 50 hidden units reads those embed-
ding vectors in sequence; the state of the LSTM at
the end of the sequence is then fed into a logistic
regression classifier. The network is trained6 in an
end-to-end fashion, including the word embeddings.7

To isolate the effect of syntactic structure, we also
consider a baseline which is exposed only to the
nouns in the sentence, in the order in which they
appeared originally, and is then asked to predict the
number of the following verb. The goal of this base-

4We limited our search to sentences that were shorter than
50 words. Whenever a sentence had more than one subject-verb
dependency, we selected one of the dependencies at random.

5Code and data are available at http://tallinzen.
net/projects/lstm_agreement.

6The network was optimized using Adam (Kingma and Ba,
2015) and early stopping based on validation set error. We
trained the number prediction model 20 times with different
random initializations, and report accuracy averaged across all
runs. The models described in Sections 5 and 6 are based on 10
runs, with the exception of the language model, which is slower
to train and was trained once.

7The size of the vocabulary was capped at 10000 (after low-
ercasing). Infrequent words were replaced with their part of
speech (Penn Treebank tagset, which explicitly encodes number
distinctions); this was the case for 9.6% of all tokens and 7.1%
of the subjects.

line is to withhold the syntactic information carried
by function words, verbs and other parts of speech.
We explore two variations on this baseline: one that
only receives common nouns (dogs, pipe), and an-
other that also receives pronouns (he) and proper
nouns (France). We refer to these as the noun-only
baselines.

4 Number Prediction Results

Overall accuracy: Accuracy was very high over-
all: the system made an incorrect number prediction
only in 0.83% of the dependencies. The noun-only
baselines performed significantly worse: 4.2% errors
for the common-nouns case and 4.5% errors for the
all-nouns case. This suggests that function words,
verbs and other syntactically informative elements
play an important role in the model’s ability to cor-
rectly predict the verb’s number. However, while the
noun-only baselines made more than four times as
many mistakes as the number prediction system, their
still-low absolute error rate indicates that around 95%
of agreement dependencies can be captured based
solely on the sequence of nouns preceding the verb.
This is perhaps unsurprising: sentences are often
short and the verb is often directly adjacent to the sub-
ject, making the identification of the subject simple.
To gain deeper insight into the syntactic capabilities
of the model, then, the rest of this section investigates
its performance on more challenging dependencies.8

Distance: We first examine whether the network
shows evidence of generalizing to dependencies
where the subject and the verb are far apart. We focus
in this analysis on simpler cases where no nouns in-
tervened between the subject and the verb. As Figure
2a shows, performance did not degrade considerably
when the distance between the subject and the verb
grew up to 15 words (there were very few longer
dependencies). This indicates that the network gen-
eralized the dependency from the common distances
of 0 and 1 to rare distances of 10 and more.

Agreement attractors: We next examine how the
model’s error rate was affected by nouns that inter-
vened between the subject and the verb in the linear

8These properties of the dependencies were identified by
parsing the test sentences using the parser described in Goldberg
and Nivre (2012).
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play an important role in the model’s ability to cor-
rectly predict the verb’s number. However, while the
noun-only baselines made more than four times as
many mistakes as the number prediction system, their
still-low absolute error rate indicates that around 95%
of agreement dependencies can be captured based
solely on the sequence of nouns preceding the verb.
This is perhaps unsurprising: sentences are often
short and the verb is often directly adjacent to the sub-
ject, making the identification of the subject simple.
To gain deeper insight into the syntactic capabilities
of the model, then, the rest of this section investigates
its performance on more challenging dependencies.8

Distance: We first examine whether the network
shows evidence of generalizing to dependencies
where the subject and the verb are far apart. We focus
in this analysis on simpler cases where no nouns in-
tervened between the subject and the verb. As Figure
2a shows, performance did not degrade considerably
when the distance between the subject and the verb
grew up to 15 words (there were very few longer
dependencies). This indicates that the network gen-
eralized the dependency from the common distances
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Agreement attractors: We next examine how the
model’s error rate was affected by nouns that inter-
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Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.
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hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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• Yes, but not fatal -- especially compared to guessing and if deprived of 
function words

• Multiple intervening nouns: “homogeneous intervention” of same number

• Yes:  The roses in the vase by the door are red. 

• No:  The roses in the vase by the chairs are red. 
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order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively unambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows a
particularly clear pattern: it tracks the number of the
main clause subject throughout the PP modifier; by
contrast, it resets when it reaches the relativizer that
which introduces the RC modifier, and then switches
to tracking the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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Training objective Sample input Training signal Prediction task Correct answer

Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL
Verb inflection The keys to the cabinet [is/are] PLURAL SINGULAR/PLURAL? PLURAL
Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL
Language model The keys to the cabinet are P (are) > P (is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

only people is a plausible subject for eat; the network
can use this information to infer that the correct form
of the verb is eat is rather than eats.

This objective is similar to the task that humans
face during language production: after the speaker
has decided to use a particular verb (e.g., write), he
or she needs to decide whether its form will be write
or writes (Levelt et al., 1999; Staub, 2009).

Grammaticality judgments: The previous objec-
tives explicitly indicate the location in the sentence in
which a verb can appear, giving the network a cue to
syntactic clause boundaries. They also explicitly di-
rect the network’s attention to the number of the verb.
As a form of weaker supervision, we experimented
with a grammaticality judgment objective. In this sce-
nario, the network is given a complete sentence, and
is asked to judge whether or not it is grammatical.

To train the network, we made half of the examples
in our training corpus ungrammatical by flipping the
number of the verb.10 The network read the entire
sentence and received a supervision signal at the end.
This task is modeled after a common human data col-
lection technique in linguistics (Schütze, 1996), al-
though our training regime is of course very different
to the training that humans are exposed to: humans
rarely receive ungrammatical sentences labeled as
such (Bowerman, 1988).

Language modeling (LM): Finally, we experi-
mented with a word prediction objective, in which
the model did not receive any grammatically relevant
supervision (Elman, 1990; Elman, 1991). In this sce-
nario, the goal of the network is to predict the next
word at each point in every sentence. It receives un-
labeled sentences and is not specifically instructed to

10In some sentences this will not in fact result in an ungram-
matical sentence, e.g. with collective nouns such as group, which
are compatible with both singular and plural verbs in some di-
alects of English (Huddleston and Pullum, 2002); those cases
appear to be rare.

attend to the number of the verb. In the network that
implements this training scenario, RNN activation
after each word is fed into a fully connected dense
layer followed by a softmax layer over the entire
vocabulary.

We evaluate the knowledge that the network has
acquired about subject-verb noun agreement using
a task similar to the verb inflection task. To per-
form the task, we compare the probabilities that the
model assigns to the two forms of the verb that in
fact occurred in the corpus (e.g., write and writes),
and select the form with the higher probability.11 As
this task is not part of the network’s training objec-
tive, and the model needs to allocate considerable
resources to predicting each word in the sentence, we
expect the LM to perform worse than the explicitly
supervised objectives.

Results: When considering all agreement depen-
dencies, all models achieved error rates below 7%
(Figure 4a); as mentioned above, even the noun-only
number prediction baselines achieved error rates be-
low 5% on this task. At the same time, there were
large differences in accuracy across training objec-
tives. The verb inflection network performed slightly
but significantly better than the number prediction
one (0.8% compared to 0.83% errors), suggesting
that the semantic information carried by the verb is
moderately helpful. The grammaticality judgment
objective performed somewhat worse, at 2.5% errors,
but still outperformed the noun-only baselines by a
large margin, showing the capacity of the LSTM ar-
chitecture to learn syntactic dependencies even given
fairly indirect evidence.

The worst performer was the language model. It

11One could also imagine performing the equivalent of the
number prediction task by aggregating LM probability mass over
all plural verbs and all singular verbs. This approach may be
more severely affected by part-of-speech ambiguous words than
the one we adopted; we leave the exploration of this approach to
future work.

Tuesday, February 20, 18



Language model

• Even large-scale LM (“Google LM”, trained on 1B 
words) still lags the more directly supervised 
model
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17

The weakness of the paper is that it doesn't provide any significant technical contribution to 
existing work. It is just a series of experiments. There is no concrete theory or contribution. 

(3) Compared to our other readings which examined the perplexity of a corpus, this paper's model seems 
severely constrained to binary classification of subject-verb plurality. It's cool that we can do this with an 
LSTM, but the scope of the paper is not that ambitious. Creating an LSTM network to determine if a 
subject and verb agree or not is markedly less impressive than using an LSTM network to determine if 
the entire sentence is grammatically correct. 
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(5) What would happen if we tried something similar to our 
first homework assignment? That is, what if we took the 
sentences from the corpus, introduced a corresponding 
sentence for each with a jumbled word order, and trained the 
LSTM to identify the grammatically correct sentences? 
Could this function as an alternative to the ngram method?
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One was the way they split their training, validation and test 
sets. It seemed very unusual and it seemed they mostly did it 
to speed up training and experiments.

Second, I do not think they gave a very good reason for why 
they choose subject-verb number agreement out of all the other 
possible structure sensitive dependencies found in text.
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Human performance?
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Human-error scores for this would be extremely helpful in knowing if the proposed tasks and 
objectives can give some extra information to the LM that even humans fail to capture.

One direction (which I think may have been taken; I think someone presented something 
like this at SCIL) would be to compare the neural network’s predictions with human 
performance on agreement attraction cases. As the authors note, humans make a lot of 
mistakes in similar contexts, and there is a lot of experimental work on the topic. 
Comparing the performance of humans and the neural network and seeing whether they 
make mistakes in similar contexts could help us understand whether the neural network is 
learning in a human-like way.
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1. The results are interesting, but where does this 
take us? I'm confused about what the authors think 
LSTMs can achieve practically. In the beginning of 
the paper, they mention that RNNs are used in 
parsing, translation and other tasks, which is why 
this study is relevant, but does the conclusion 
advocate for or against their use?
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2. The Subject-Verb-Object structure is only found in English 
and similar languages right? What about a language like Irish 
where the verb would precede the subject? How would that 
affect their experiments? For instance if there are multiple 
nouns following a verb, would it be possible to identify the 
subject based on the number of the verb? I'm not able to 
come up with an example though.
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[The authors] stated that syntactic parsing driven approaches are 
prone to failure. However, we may think of adopting syntactic 
parser as auxiliary feature for the agreement prediction model of 
LSTM. Recently, some [research has] reported that some NLP 
tasks can be boosted by using syntactic structure information.

Tuesday, February 20, 18



More/explicit hierarchy?

24

 I would be really interested to see how do architectures which explicitly account for the 
compositional nature of language by having a hierarchical structure, compare on tasks like 
the verb number prediction task. I am really curious to see if architectures like those 
proposed in Tai et al's 'Improved Semantic Representations From Tree-Structured Long 
Short-Term Memory Networks'  are able to work as well without explicit supervision and 
really harness the grammatical structure of the language.
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• Excellent illustration of model analysis

• Analyze model performance with respect to 
research questions

• Break down errors by properties of examples

• Visualizations

• Scientific understanding of computational linguistics
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Questions

• LSTMs can impressively learn longer-range 
interactions in real natural language data

• Previous work: artificial languages

• Total unsupervised learning not as good as 
supervised syntactic signal: why??

• Is there a model class such at simple LM training 
will capture all of language?

• What supervision do we need for good NLP 
systems?
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