Neural network LM

CS 690N, Spring 2018

Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Tuesday, February 13, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

® Paper presentations
® Groups 2-3
® Aim for 20 minutes

® Choose a full-length research paper in NLP, or
computational linguistics

® Choose yourself (and get our approval >| week out), or
choose from a list

® Similar to the reading feedback writing:
Summarization (what did they do? what methods? what
data), explanation (what are the contributions?),
synthesis and critique (what are the strengths/
weaknesses! relationships to other work or future

work?)

Tuesday, February 13, 18

Bengio et al. 2003: N-gram multilayer perceptron
f(wt7 T 7Wt—n+1) — p(wt‘wtl—l)

Learn: C,W, U, H,d (chain rule)

i-th output = P(w, = i| context)

| C(l) c R™ Word embedding
softmax parameters
X — _eee)
N
most| computation here \\ A = (C(Wt_1)7c(wf—2)7 T 7C(Wf—7l‘|—1))
\ . .
\ Lookup layer with concatenation:
\ (kinda) hidden layer size (n-1)m
tanh !
°e) |
K shortcut another hidden layer,
! linear layer size h
’
’ | |
- C(W;_z) C(Wt_l) P 7
Ge o - —®) G o y =b+ Wx—+ U tanh(d + Hx)
ng}f_up DA L Marix € -7 Vocab output: log-probs size V
i C shared parameters
mn N o across words
index for w;_, 11 index for w;_» index for w,_; ey Wt

p(wt‘wt—la'”wt—n—l—l) —

>ievi

Output layer (softmax / log-linear)

Tuesday, February 13, 18

® Embedding lookup (C: dim (V,m)) equivalent to
one-hot encoding (len V) + hidden layer (C)

Tuesday, February 13, 18

Why!

® Curse of dimensionality: bottleneck information into
K~30 hidden dimensions (K<<YV)

® NNs can learn complicated functions

® ..we don’t really have a good grip on what’s learnable
beyond universal function approximation

® .. but seems better than linear dim reduction (e.g. S+P).
Non-planar regions in embedding space!?

® Multilayer structures

® Maybe:“deep”’ models learn more abstract concepts
(clearly in vision; less clear for NLP, though can help)

® Definitely: hierarchical and sequential NNs to match
hierarchical/memory-ful structure in language (recursive/
recurrent NNs)

Tuesday, February 13, 18

Word/feature embeddings

® “Lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

® Any binary feature that was directly used in log-linear
models, give it a vector

® Character n-grams, part-of-speech tags, etc.
® As model parameters: learn them like everything else
® Or, as external information: use pretrained embeddings

e Common in practice: use a faster-to-train model on very
large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]
® Shared representations for
domain adaptation and multitask learning

Tuesday, February 13, 18

Nonlinear activation functions

2.0 T T T T T | 1 |

.’ e’
15} . sigmoid(x) = T+ or
1.0 N |
| tanh(z) = 2 x sgm(x) — 1
00 == =====- '\\5“"\ — sigmoid{ ()4 = max(0, x)
_o5L """ tanh || positive part a.k.a. ReLU
- - RelU

saapgupt?t | | | | | |
-20 -15 -1.0 -05 00 O5 10 15 2.0

Tuesday, February 13, 18

Neural Language Models: Sampling

(2] el =<l o o
=|glc 2lwlolol o
IBNIIOQU>

op

Wph|Wn—1, Wp—2 ~~

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

>

Wh|Wn—1, Wp—2 n

| D1

AREEE
HH LT

;—»_s‘:’n .—‘ ~)‘»@
= ey
/ s

@) CoD

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

fop

Wn‘Wn—la Wp—2 ~~ n

“ ol =12l 5l 5l |l < ol gl
H EHENEEEER mEEH

| D2

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

!
T M A
hl C C hs)
2 X T % T
1) Cwo) Cwo) Cwi) Cw) Cwa)

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

« A
MEEDR < ol gl H
HH THTET SR H

o R - < EIA
EREEEEE K

C

HIH HHEEHEEEEE

AE
H EEEEEREERER
17

Il p3

!
4
4

C

hs3

),

7%
Cw) (w2)

¥

§ LEES‘E.?E%E _ggﬁ' g g ..§ p4

C ha)
7w
(w2) ws)

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

The usual training objective is

the cross entropy of the data
given the model (MLE):

1 . (Cwn)
F = —NZCOStn(Wnapn) v
n (costn)
*
The cost function is simply the (D,)
model’s estimated log-probability o

of wy: (h)

7~
cost(a, b) = a' log b (wn—Q)(wn—l)

(assuming w; is a one hot
encoding of the word)

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is (Wn,)
straightforward with back v
propagation: (Coft’”)
b
a_"r __ 1 Z dcost, 0Pn (Pn)
oW " 9pn X
a_‘F 1 Z Ocost, OPpn Oh, (hn)

(Wn—2)(Wn-1)

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
oOF 1 < dcost,, 0P, OF 1 < Jdcost, 0p, Oh,

oW~ 4 op, OW ° OV 4 9p, Oh, OV

n=1 n=1

C_) C) C_h) (C_ k)
27 RN\ 2 RN 27 RN 27 RN\
(w_1)(Cwo) Cwo (w1) (w1 (w2) (w2 H)(ws)

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Comparison with Count Based N-Gram LMs

Good

e Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

e Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

e The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

e The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

e Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Training NNs

® Dropout (preferred regularization method)
® Minibatch (adaptive) SGD
® Parallelization (CPUs, GPUs) within a minibatch

® [ocal optima (?)

Tuesday, February 13, 18

Boring old SGD

_ arams X, learning rate n, minibatch timestep t, gradient
Tyy1 = T —1)gy Params X earning rate 1 Pt.g 3
(typically: learning rate decay on fixed schedule. or constant
learning rate!?)

Tuesday, February 13, 18

Boring old SGD

_ arams X, learning rate n, minibatch timestep t, gradient
Tyy1 = T —1)gy Params X earning rate 1 Pt.g 3
(typically: learning rate decay on fixed schedule. or constant
learning rate!?)

Adaptive SGD§

® AdaGrad: simplest of
adaptive SGD methods.

® Has per-parameter,
adaptive learning rates

i e

Tt ; If G was the Hessian, and we calculated
| \/ S, g2 gand G on the whole batch, this would
V=17t be a Newton-Raphson step

Lt41.4

® Related: (Nesterov) momentum

- — o, G—l/ 2 © ® \Variants with tricks about history decay,
t+1 = &t Iy 91 etc. (e.g.Adam, RMSprop,Adadelta...)

Tuesday, February 13, 18

Local vs. global models

Local models Long-history models
W | We—2, W1 Wy | Wi, ... Wi

Fully observed
direct word models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM

20

Tuesday, February 13, 18

