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® Paper presentations
® Groups 2-3
® Aim for 20 minutes

® Choose a full-length research paper in NLP, or
computational linguistics

® Choose yourself (and get our approval >| week out), or
choose from a list

® Similar to the reading feedback writing:
Summarization (what did they do? what methods? what
data), explanation (what are the contributions?),
synthesis and critique (what are the strengths/
weaknesses! relationships to other work or future

work?)
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Bengio et al. 2003: N-gram multilayer perceptron
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® Embedding lookup (C: dim (V,m)) equivalent to
one-hot encoding (len V) + hidden layer (C)
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Why!

® Curse of dimensionality: bottleneck information into
K~30 hidden dimensions (K<<YV)

® NNs can learn complicated functions

® ..we don’t really have a good grip on what’s learnable
beyond universal function approximation

® .. but seems better than linear dim reduction (e.g. S+P).
Non-planar regions in embedding space!?

® Multilayer structures

® Maybe:“deep”’ models learn more abstract concepts
(clearly in vision; less clear for NLP, though can help)

® Definitely: hierarchical and sequential NNs to match
hierarchical/memory-ful structure in language (recursive/
recurrent NNs)
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Word/feature embeddings

® “Lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

® Any binary feature that was directly used in log-linear
models, give it a vector

® Character n-grams, part-of-speech tags, etc.
® As model parameters: learn them like everything else
® Or, as external information: use pretrained embeddings

e Common in practice: use a faster-to-train model on very
large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]
® Shared representations for
domain adaptation and multitask learning
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Nonlinear activation functions

2.0 T T T T T | 1 |

.’ e’
15} . sigmoid(x) = T+ or
1.0 N |
| tanh(z) = 2 x sgm(x) — 1
00 == =====- '\\5“"\ — sigmoid{ ()4 = max(0, x)
_o5L """ tanh || positive part a.k.a. ReLU
- - RelU

saapgupt?t | | | | | |
-20 -15 -1.0 -05 00 O5 10 15 2.0

Tuesday, February 13, 18



Neural Language Models: Sampling
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[Slide: Phil Blunsom]
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Sampling
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Neural Language Models: Training

The usual training objective is

the cross entropy of the data
given the model (MLE):

1 . (Cwn )
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The cost function is simply the ( D, )
model’s estimated log-probability o

of wy: ( h )
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cost(a, b) = a' log b (wn—Q)(wn—l)

(assuming w; is a one hot
encoding of the word)
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Neural Language Models: Training

Calculating the gradients is ( Wn, )
straightforward with back v
propagation: (Coft’”)
b
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Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
oOF 1 < dcost,, 0P, OF 1 < Jdcost, 0p, Oh,
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Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.
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Comparison with Count Based N-Gram LMs

Good

e Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

e Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

e The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

e The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

e Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]
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Training NNs

® Dropout (preferred regularization method)
® Minibatch (adaptive) SGD
® Parallelization (CPUs, GPUs) within a minibatch

® [ocal optima (?)
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Boring old SGD

_ arams X, learning rate n, minibatch timestep t, gradient
Tyy1 = T —1)gy  Params X earning rate 1 Pt.g 3
(typically: learning rate decay on fixed schedule. or constant
learning rate!?)
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Boring old SGD

_ arams X, learning rate n, minibatch timestep t, gradient
Tyy1 = T —1)gy  Params X earning rate 1 Pt.g 3
(typically: learning rate decay on fixed schedule. or constant
learning rate!?)

Adaptive SGD§

® AdaGrad: simplest of
adaptive SGD methods.

® Has per-parameter,
adaptive learning rates

i e

Tt ; If G was the Hessian, and we calculated
| \/ S, g2 gand G on the whole batch, this would
V=17t be a Newton-Raphson step

Lt41.4

® Related: (Nesterov) momentum

- — o, G—l/ 2 © ® \Variants with tricks about history decay,
t+1 = &t Iy 91 etc. (e.g.Adam, RMSprop,Adadelta...)
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Local vs. global models

Local models Long-history models
W | We—2, W1 Wy | Wi, ... Wi

Fully observed
direct word models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM

20
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