
Neural network LM

CS 690N, Spring 2018
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, February 13, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

• Paper presentations

• Groups 2-3

• Aim for 20 minutes

• Choose a full-length research paper in NLP, or
computational linguistics

• Choose yourself (and get our approval >1 week out), or
choose from a list

• Similar to the reading feedback writing:
Summarization (what did they do? what methods? what
data), explanation (what are the contributions?),
synthesis and critique (what are the strengths/
weaknesses? relationships to other work or future
work?)

2

Tuesday, February 13, 18

3

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

Word embedding
parameters

Lookup layer with concatenation:
(kinda) hidden layer size (n-1)m

Vocab output: log-probs size V

Output layer (softmax / log-linear)

Learn: C, W, U, H, d (chain rule)

another hidden layer,
size h

Bengio et al. 2003: N-gram multilayer perceptron

shortcut
linear layer

Tuesday, February 13, 18

• Embedding lookup (C: dim (V,m)) equivalent to
one-hot encoding (len V) + hidden layer (C)

4

Tuesday, February 13, 18

Why?
• Curse of dimensionality: bottleneck information into

K~30 hidden dimensions (K<< V)

• NNs can learn complicated functions

• ... we don’t really have a good grip on what’s learnable
beyond universal function approximation

• ... but seems better than linear dim reduction (e.g. S+P).
Non-planar regions in embedding space?

• Multilayer structures

• Maybe: “deep” models learn more abstract concepts
(clearly in vision; less clear for NLP, though can help)

• Definitely: hierarchical and sequential NNs to match
hierarchical/memory-ful structure in language (recursive/
recurrent NNs)

5

Tuesday, February 13, 18

Word/feature embeddings

• “Lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

• Any binary feature that was directly used in log-linear
models, give it a vector

• Character n-grams, part-of-speech tags, etc.

• As model parameters: learn them like everything else

• Or, as external information: use pretrained embeddings

• Common in practice: use a faster-to-train model on very
large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

• Shared representations for
domain adaptation and multitask learning

6

Tuesday, February 13, 18

Nonlinear activation functions

7

5.3. RECURRENT NEURAL NETWORK LANGUAGE MODELS 91

Figure 5.2: Nonlinear activation functions for neural networks

recurrent neural network (RNN Mikolov et al., 2010). The basic idea is to recurrently
update the context vectors as we move through the sequence. Let us write h

m

for the
contextual information at position m in the sequence. RNNs employ the following recur-
rence:

x

m

,�

w

m

(5.27)
h

m

=g(⇥h

m�1

+ x

m

) (5.28)

p(w
m+1

| w
1

, w
2

, . . . , w
m

) =
exp(�

w

m+1 · h
m

)P
w

02V exp(�
w

0 · h
m

)
, (5.29)

where � is a matrix of input word embeddings, and x

m

denotes the embedding for word
w
m

. The function g is an element-wise nonlinear activation function. Typical choices are:

• tanh(x), the hyperbolic tangent;

• �(x), the sigmoid function 1

1+exp(�x)

;

• (x)
+

, the rectified linear unit, (x)
+

= max(x, 0), also called ReLU.

These activation functions are shown in Figure 5.2. The sigmoid and tanh functions
“squash” their inputs into a fixed range: [0, 1] for the sigmoid, [�1, 1] for tanh. This makes
it possible to chain together many iterations of these functions without numerical insta-
bility.

A key point about the RNN language model is that although each w
m

depends only on
the context vector h

m�1

, this vector is in turn influenced by all previous tokens, w
1

, w
2

, . . . w
m�1

,
through the recurrence operation: w

1

affects h

1

, which affects h

2

, and so on, until the in-
formation is propagated all the way to h

m�1

, and then on to w
m

(see Figure 5.1). This
is an important distinction from n-gram language models, where any information out-
side the n-word window is ignored. Thus, in principle, the RNN language model can

(c) Jacob Eisenstein 2014-2017. Work in progress.

sigmoid(x) =

e

x

1 + e

x

tanh(x) = 2⇥ sgm(x)� 1

positive part a.k.a. ReLU
(x)+ = max(0, x)

Tuesday, February 13, 18

Neural Language Models: Sampling

wn|wn�1

,wn�2

⇠ p̂n

wn�1

hn

a

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

wn�2

he built

p̂n

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

wn|wn�1

,wn�2

⇠ p̂n

w0

There

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

w�1

<s> <s>

p̂1

h1

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

wn|wn�1

,wn�2

⇠ p̂n

w0

There

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

w�1

<s> <s>

p̂1

he
~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk p̂2

w1w0

h1 h2

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

wn|wn�1

,wn�2

⇠ p̂n

w0

There

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

w�1

<s> <s>

p̂1

he
~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

built

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rkp̂2 p̂3

w1w0 w1 w2

h1 h2 h3

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

wn|wn�1

,wn�2

⇠ p̂n

w0

There

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

w�1

<s> <s>

p̂1

he
~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

built

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rk

a

~

th
e it if w
as an
d

al
l

he
r

he ca
t

ro
ck

do
g

ye
s

w
e

te
n

su
n of a I yo
u

Th
er
e

bu
ilt

aa
rd
va

rkp̂2 p̂3 p̂4

w1w0 w1 w2 w2 w3

h1 h2 h3 h4

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

The usual training objective is
the cross entropy of the data
given the model (MLE):

F = � 1

N

X

n

costn(wn, p̂n)

The cost function is simply the
model’s estimated log-probability
of wn:

cost(a, b) = aT log b

(assuming wi is a one hot
encoding of the word)

wn

costn

wn�1

hn

p̂n

wn�2

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is
straightforward with back
propagation:

@F
@W

= � 1

N

P
n

@costn
@p̂n

@p̂n
@W

@F
@V

= � 1

N

P
n

@costn
@p̂n

@p̂n
@hn

@hn
@V

wn

costn

wn�1

hn

p̂n

wn�2

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:

@F
@W

= �1

4

4X

n=1

@costn
@p̂n

@p̂n
@W

,
@F
@V

= �1

4

4X

n=1

@costn
@p̂n

@p̂n
@hn

@hn
@V

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0

h1 h2 h3 h4

w1 w2 w3

p̂1 p̂2 p̂3 p̂4

F

w�1 w0 w1 w2

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Comparison with Count Based N-Gram LMs

Good

• Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

• Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

• The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

• The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

• Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]

Tuesday, February 13, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Training NNs

• Dropout (preferred regularization method)

• Minibatch (adaptive) SGD

• Parallelization (CPUs, GPUs) within a minibatch

• Local optima (?)

17

Tuesday, February 13, 18

18

Notes on AdaGrad

Chris Dyer
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA, 15213
cdyer@cs.cmu.edu

Abstract

These are some notes on the adaptive (sub)gradient methods proposed by Duchi et al. (2011), a family of
easy-to-implement techniques for online parameter learning with strong theoretical guarantees and widely
attested empirical success. These notes are designed to be a quick summary of the technique for those
interested in applying it to their own online learning problems.

1 Introduction

Consider the problem of online learning in which a series of guesses (parameter estimates) x1,x2, . . .,
where each xt 2 X ✓ Rd (and X is a convex set), is generated by observing feedback from a series of
losses f1(x1), f2(x1), . . .—namely the series of (sub)gradients g1, g2, . . . of the respective unregularized
loss ft(x) with respect to x. The task is to do as well as possible relative to the best static x

⇤
2 X , i.e., to

find an algorithm where the regret

R(T) =
TX

t=1

ft(xt)

| {z }
actual incurred loss

� inf
x2X

TX

t=1

ft(x)

| {z }
best static predictor

is small.
AdaGrad is an online learning algorithm with asymptotically sublinear regret. We describe the case when

X = Rd (§2), where a sparsity-inducing `1 regularizer is desired (§3), and when X ⇢ Rd, in which a
projection step is necessary to ensure each xt 2 X (§4).

2 AdaGrad for (sub)gradient optimization

Standard stochastic (sub)gradient methods move xt in a minimizing direction, given by �gt. When X =
Rd, the familiar stochastic subgradient descent algorithm is simply

xt+1 = xt � ⌘gt,

where ⌘ > 0 is a scalar learning rate.
AdaGrad alters this update to adapt based on historical information, so that frequently occurring features

in the gradients get small learning rates and infrequent features get higher ones. As Duchi et al. put it, the
learner learns slowly from frequent features but “pays attention” to rare but informative features. In prac-
tice, this means that infrequently occurring features can be learned effectively along side more frequently
occurring features.

params x, learning rate η, minibatch timestep t, gradient gt
(typically: learning rate decay on fixed schedule. or constant
learning rate?)

Boring old SGD

Tuesday, February 13, 18

Adaptive SGD
• AdaGrad: simplest of

adaptive SGD methods.

• Has per-parameter,
adaptive learning rates

19

Notes on AdaGrad

Chris Dyer
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA, 15213
cdyer@cs.cmu.edu

Abstract

These are some notes on the adaptive (sub)gradient methods proposed by Duchi et al. (2011), a family of
easy-to-implement techniques for online parameter learning with strong theoretical guarantees and widely
attested empirical success. These notes are designed to be a quick summary of the technique for those
interested in applying it to their own online learning problems.

1 Introduction

Consider the problem of online learning in which a series of guesses (parameter estimates) x1,x2, . . .,
where each xt 2 X ✓ Rd (and X is a convex set), is generated by observing feedback from a series of
losses f1(x1), f2(x1), . . .—namely the series of (sub)gradients g1, g2, . . . of the respective unregularized
loss ft(x) with respect to x. The task is to do as well as possible relative to the best static x

⇤
2 X , i.e., to

find an algorithm where the regret

R(T) =
TX

t=1

ft(xt)

| {z }
actual incurred loss

� inf
x2X

TX

t=1

ft(x)

| {z }
best static predictor

is small.
AdaGrad is an online learning algorithm with asymptotically sublinear regret. We describe the case when

X = Rd (§2), where a sparsity-inducing `1 regularizer is desired (§3), and when X ⇢ Rd, in which a
projection step is necessary to ensure each xt 2 X (§4).

2 AdaGrad for (sub)gradient optimization

Standard stochastic (sub)gradient methods move xt in a minimizing direction, given by �gt. When X =
Rd, the familiar stochastic subgradient descent algorithm is simply

xt+1 = xt � ⌘gt,

where ⌘ > 0 is a scalar learning rate.
AdaGrad alters this update to adapt based on historical information, so that frequently occurring features

in the gradients get small learning rates and infrequent features get higher ones. As Duchi et al. put it, the
learner learns slowly from frequent features but “pays attention” to rare but informative features. In prac-
tice, this means that infrequently occurring features can be learned effectively along side more frequently
occurring features.

params x, learning rate η, minibatch timestep t, gradient gt
(typically: learning rate decay on fixed schedule. or constant
learning rate?)

AdaGrad provides a per-feature learning rate at each time step t,

⌘t,i =
⌘p
Gt,ii

,

where each Gt 2 Rd⇥d is a diagonal matrices where diagonal element i, i is defined to be
Pt

t0=1 g
2
t0,i, that

is, the sum of the squares of the ith dimension of all historical gradients.1 When implementing this, you
will want to keep a d-dimensional vector representing diag(Gt) to store a running total of the squares of the
gradients.

When X = Rd, the AdaGrad update per feature is,

xt+1,i = xt,i �
⌘qPt
t0=1 g

2
t0,i

gt,i,

which may be written compactly for the whole vector as

xt+1 = xt � ⌘G�1/2
t � gt,

where � is element-wise multiplication.

Setting ⌘. Since the learning rate for each feature is quickly adapted, the value for ⌘ is far less important
than it is with SGD. I have used ⌘ = 1.0 for a very large number of different problems. The primary role of
⌘ is to determine how much a feature changes the very first time it is encountered, so in problems with large
numbers of extremely rare features, some additional care may be warranted.

3 Adding `1 regularization

Directly applying stochastic subgradient descent to an `1 regularized objective fails to produce sparse so-
lutions in bounded time, which has motivated several specialized algorithms that target such objectives.
We will use the AdaGrad variant of one such learning algorithm, the so-call regularized dual averaging

algorithm of Xiao (2010), although other approaches are possible.
Xiao’s algorithm makes use of the online average (sub)gradient at time t,2

gt =
1

t

tX

t0=1

gt0 .

Note that the subgradients gt do not include terms for the regularizer, they are (sub)derivatives of the un-
regularized objective only—the regularizer is handled separately in the update. And, importantly, the RDA
algorithm assumes w1 = g0 = 0.

Using the average gradient, the `1 regularized objective may be optimized with the following update:

xt+1,i =

(
0 if |gt,i| �

�sgn(gt,i)⌘
p

t(|gt,i|� �) otherwise
.

1In the Duchi et al. (2011) paper, this is notated diag(Gt) and is a diagonal approximation to the outer product matrix of
the sequence of gradients up to time t. Since computing this outer product matrix and taking its square root is computationally
intractable when d is even moderately large, I assume the diagonal form throughout to keep things simple. However, the outer
product form has better guarantees and should be used if d is small; refer to the original paper for details.

2The “dual average” in the name comes from the fact that the average of the subgradients exist in a dual space for the original
problem. They can be understood in contrast to the primal average x.

Boring old SGD

• If G was the Hessian, and we calculated
g and G on the whole batch, this would
be a Newton-Raphson step

• Related: (Nesterov) momentum

• Variants with tricks about history decay,
etc. (e.g. Adam, RMSprop, Adadelta...)

AdaGrad provides a per-feature learning rate at each time step t,

⌘t,i =
⌘p
Gt,ii

,

where each Gt 2 Rd⇥d is a diagonal matrices where diagonal element i, i is defined to be
Pt

t0=1 g
2
t0,i, that

is, the sum of the squares of the ith dimension of all historical gradients.1 When implementing this, you
will want to keep a d-dimensional vector representing diag(Gt) to store a running total of the squares of the
gradients.

When X = Rd, the AdaGrad update per feature is,

xt+1,i = xt,i �
⌘qPt
t0=1 g

2
t0,i

gt,i,

which may be written compactly for the whole vector as

xt+1 = xt � ⌘G�1/2
t � gt,

where � is element-wise multiplication.

Setting ⌘. Since the learning rate for each feature is quickly adapted, the value for ⌘ is far less important
than it is with SGD. I have used ⌘ = 1.0 for a very large number of different problems. The primary role of
⌘ is to determine how much a feature changes the very first time it is encountered, so in problems with large
numbers of extremely rare features, some additional care may be warranted.

3 Adding `1 regularization

Directly applying stochastic subgradient descent to an `1 regularized objective fails to produce sparse so-
lutions in bounded time, which has motivated several specialized algorithms that target such objectives.
We will use the AdaGrad variant of one such learning algorithm, the so-call regularized dual averaging

algorithm of Xiao (2010), although other approaches are possible.
Xiao’s algorithm makes use of the online average (sub)gradient at time t,2

gt =
1

t

tX

t0=1

gt0 .

Note that the subgradients gt do not include terms for the regularizer, they are (sub)derivatives of the un-
regularized objective only—the regularizer is handled separately in the update. And, importantly, the RDA
algorithm assumes w1 = g0 = 0.

Using the average gradient, the `1 regularized objective may be optimized with the following update:

xt+1,i =

(
0 if |gt,i| �

�sgn(gt,i)⌘
p

t(|gt,i|� �) otherwise
.

1In the Duchi et al. (2011) paper, this is notated diag(Gt) and is a diagonal approximation to the outer product matrix of
the sequence of gradients up to time t. Since computing this outer product matrix and taking its square root is computationally
intractable when d is even moderately large, I assume the diagonal form throughout to keep things simple. However, the outer
product form has better guarantees and should be used if d is small; refer to the original paper for details.

2The “dual average” in the name comes from the fact that the average of the subgradients exist in a dual space for the original
problem. They can be understood in contrast to the primal average x.

Tuesday, February 13, 18

Local vs. global models

20

wt | wt�2, wt�1 wt | w1, . . . wt�1

Local models Long-history models

Fully observed
direct word models

. Log-linear models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM

Tuesday, February 13, 18

