From features to neural networks

CS 690N, Spring 2018

Advanced Natural Language Processing
http://people.cs.umass.edu/~brenocon/anlp2018/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Tuesday, February 6, 18

http://people.cs.umass.edu/~brenocon/anlp2018/
http://people.cs.umass.edu/~brenocon/anlp2018/

MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))

Tuesday, February 6, 18

Feature selection

® Offline feature selection
® Count cutoffs: computational, not performance benefits

® Predictive value: mutual info./ info. gain / chi-square

® Jointly learning for feature selection via
L1 regularization: encourages O sparsity

m@in —1ng9(y|$)+>‘zwj| @ Q‘@
Y

\ | 4

-

L1 L2

® | | optimization: convex but nonsmooth; requires

subgradient methods (e.g. OWL-QN: variant of LBFGS.
Available in LibLBFGS) 3

Tuesday, February 6, 18

Too many features

Millions to billions of features: performance often keeps
improving!

Engineering issue: feature name=>number mapping
Feature selection ... mixed results

® Count cutoffs: great computational benefits;
typically not for performance

® Features seen only once at training time typically help (!),
or even features not seen at training time

® Predictive value: mutual info./ info. gain / chi-square

® LI regularization: encourages O sparsity, but not always
better than L2

® [structured sparsity more interesting: Yogatama, Martins tutorial]

® Personal opinion: feature-based models just want a high
diversity of weak signals

Tuesday, February 6, 18

Feature hashing

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!) (Weinberger et al. 2009)

® Accuracy loss low since collisions are rare (since features
are sparse). Works well, great for large-scale data (memory
usage constant!)

® Practically: use a fast string hashing function
(e.g. murmurhash or Python’s internal one)

® This is a type of randomized projection Ax. Typically not
better than the original representation.

® |Instead of randomized embeddings, better generalization
from learning them

Tuesday, February 6, 18

Dense linear representations

® Feature hashing as A (fixed) B (learned)
. X > Z >y
dense representation

P(wnext ‘ wPTG’U) X eXp(Awp'refu) Bwne:ct)

A (learned) B (learned)

Tuesday, February 6, 18

Dense linear representations

® Feature hashing as A (fixed) B (learned)
. X > Z >y
dense representation

P(wnext ‘ wPTG’U) X eXp(Awprefu) Bwne:ct)

® Saul and Pereira 1997 as A (learned) B (learned)
dense representation X > Z > Y

P(wnext | wprev) = A

Wprev Wnext

Tuesday, February 6, 18

Dense linear representations

® Feature hashing as A (fixed) B (learned)
. X > Z >y
dense representation

P(wnext ‘ wPTG’U) X eXp(Awprefu) Bwne:ct)

® Saul and Pereira 1997 as A (learned) B (learned)
dense representation X > Z > Y

P(wnext | wprev) = A

Wprev Wnext

® Mnih and Hinton 2007:

log-bilinear model
[related: word2vec, Mikolov et al.]

Tuesday, February 6, 18

Dense linear representations

® Feature hashing as A (fixed) B (learned)

: X > Z >
dense representation Y
P(wnext ‘ wPTG’U) X eXp(Awprefu) wne:ct)
® Saul and Pereira 1997 as A (learned) B (learned)
. X > Z > y
dense representation

P(wneat | wp?”‘ev) = Awp’r’ev " Dwgnent

® Mnih and Hinton 2007:
log-bilinear model
[related: word2vec, Mikolov et al.]

P(wnext | Wprev) X €XpP(Awpey * Buwpear)

® |earn with gradient descent
® Unlike S+P: A;B don’t have to be on
simplex

® (this is simplified from their version)
6

Tuesday, February 6, 18

Neural networks

® |dea: learn distributed representations of concepts
® Nonlinear functions seem to help

® Multilayer perceptron: http://playground.tensorflow.org/

U-m [] +m

Threshold Output

Function Sigmoid Activation

Function

FIGURE 1. The basic components of a parallel distributed processing system.

@ @OUD @D @ @ @D @D WD
[Diagrams from: Rumelhart and McClelland (ed.) 1986, Parallel Distributed Processing]

7

Tuesday, February 6, 18

http://playground.tensorflow.org/
http://playground.tensorflow.org/

Neural networks in NLP

® TJext representation: real-valued vectors

® Word embeddings ... {character, phrase, part-of-
speech tag, entity, relation} embeddings ...

® Probability model (e.g. p(y|x))
® Output: logistic/softmax (like log-

® “Squash network™ nonlinear com
of the input. e.g. multilayer perce
network

inear), but
dination

btron / feedforward

® [earn both word embeddings and how to combine

them as parameters.

® Hopefully learn interesting high-level or fine-grained
features of language, and how they interact

Tuesday, February 6, 18

pw=the DET w=dog&pw=the

t= NOUN
w= dog g w=dog&pt=DET w=chair&pt=DET
X = (010 o1,090,...,0,1,0,0,1,0,...,0,0,0,...,0)

(b)

X = 60.26, 0.25, -0.39, -0.07, 0.13, —0.178&—0.43, -0.37,-0.12, 0.13, -0.11, 0.3@[(—0.04, 0.50, 0.04, O.44j

NOUN (0.16, 0.03, -0.17, -0.13)

ir (-0.37,-0.23,0.33, 0.38, -0.02, -0.37
chair/ (: VERB @ (0.41, 0.08, 0.44, 0.02)

on | (-0.21,-0.11, -0.10, 0.07, 0.37, 0.15)
dog | (0.26, 0.25, -0.39, -0.07, 0.13, -0.17)

DET (-0.04, 0.50, 0.04, 0.44)

AD] = (-0.01,-0.35, -0.27, 0.20)
the | (-0.43,-0.37,-0.12, 0.13, -0.11, 0.34) SREP | (:0.26, 0.28, -0.34, -0.02)

mouth | .)) _
(-0.32, 0.43, 014 0.50, -0.13, -0.42) ADV (0.02, -0.17, 0.46, -0.08)

gone | (0.06, -0.21, -0.38, -0.28, -0.16, -0.44)

POS Embeddings

Word Embeddings

Tuesday, February 6, 18

Bengio et al. 2003: N-gram multilayer perceptron
f(wt7 T 7wt—n—|—1) — p(wt‘wtl—l)

Learn: C,W, U, H,d (chain rule)

i-th output = P(w, = i| context)

J C(.) E Rm WOI"CI embedding
softmax ! parameters
(X0 —___ees)
N\
most| computation here \\ A = (C(Wt_1)7c(wt—2)7 T 7C(Wf—7l‘|—1))
\ . .
\ Lookup layer with concatenation:
\ (kinda) hidden layer size (n-1)m
tanh 1
®0) "
) another hidden layer,
! size h
. |
C(W;_z) C(Wt_l) . -’ 7
—) e o) y =b+ Wx—+ U tanh(d + Hx)
S A L Marix € -7 Vocab output: log-probs size V
i C P shared parameters
n across words
[] []
index for w;_, 11 index for w;_» index for w,_; ey Wt

p(wt‘wt—la'”wt—n—l—l) —

zi eYi .

Output layer (softmax / log-linear)

Tuesday, February 6, 18

® stopped here 2/6

Tuesday, February 6, 18

Why!

® Curse of dimensionality: bottleneck information into
K~30 hidden dimensions (K<<YV)

® NNs can learn complicated functions

® ..we don’t really have a good grip on what’s learnable
beyond universal function approximation

® .. but seems better than linear dim reduction (e.g. S+P).
Non-planar regions in embedding space!?

® Multilayer structures

® Maybe:“deep”’ models learn more abstract concepts
(clearly in vision; less clear for NLP, though can help)

® Definitely: hierarchical and sequential NNs to match
hierarchical/memory-ful structure in language (recursive/
recurrent NNs)

Tuesday, February 6, 18

Word/feature embeddings

® “Lookup layer”: from discrete input features (words,
ngrams, etc.) to continuous vectors

® Any binary feature that was directly used in log-linear
models, give it a vector

® Character n-grams, part-of-speech tags, etc.
® As model parameters: learn them like everything else
® Or, as external information: use pretrained embeddings

e Common in practice: use a faster-to-train model on very
large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]
® Shared representations for
domain adaptation and multitask learning

Tuesday, February 6, 18

Neural Language Models

Feed forward network

~
\—/

Wh + b

=
|

y
*
h = g(Vx+c) (. h)
*
X

~
\—/

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Nonlinear activation functions

2.0 T T T T T | 1 |

// ex
i /, | sigmoid(x) = [or
1.0 N |
o tanh(x) = 2 x sgm(xz) — 1
OO0 = = = = = = = = -\\\-*‘,\ — sigmoid |7 (QU)_|_ — maX(O, CE)
osl e tanh || a.k.a.“ReLU”
- = RelU

saapgupt?t | | | | | |
-20 -15 -1.0 -05 00 O5 10 15 2.0

Tuesday, February 6, 18

Trigram NN language model

Word embeddings

l

h, = g(V[Wn—l; Wn—2] =+ C)
pn = softmax(Wh, + b)
exp U; .
softmax(u); =
() Zj exp U; (p*n)

C lhn\)
e w; are one hot vetors and p; are
distributions, (wn—Q)(wn—l)
o |w;| = |pi| = V (words in the
vocabulary),

e V is usually very large > 1eb.

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

(2] el =<l o o
=|glc 2lwlolol o
IBNIIOQU>

op

Wph|Wn—1, Wp—2 ~~

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

>

Wh|Wn—1, Wp—2 n

| D1

AREEE
HH LT

= =
/ s

@) CoD

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

fop

Wn‘Wn—la Wp—2 ~~ n

g <15l < gl ol el < ol 2|<!
g HEHEEEERD 223

| D2

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

!
T M A
hl C C hs)
2 X T % T
1) Cwo) Cwo) Cwi) Cw) Cwa)

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Sampling

< A
g AEHEEEERS SHEFRERREERRRRE
H SEEEEEEE EH E

g o sl [1L A
E 22 K

C

HIH HHEEHEEEEE

AE
H EEEEEREERER
17

Il p3

!
4
4

C

hs3

),

7%
Cw) (w2)

¥

. i A

C ha)
7w
(w2) ws)

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

The usual training objective is

the cross entropy of the data
given the model (MLE):

1 . (Cwn)
F = —NZCOStn(Wnapn) v
n (costn)
*
The cost function is simply the (D,)
model’s estimated log-probability o

of wy: (h)

7~
cost(a, b) = a' log b (wn—Q)(wn—l)

(assuming w; is a one hot
encoding of the word)

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is (Wn,)
straightforward with back v
propagation: (Coft’”)
b
a_"r __ 1 Z dcost, 0Pn (Pn)
oW " 9pn X
a_‘F 1 Z Ocost, OPpn Oh, (hn)

(Wn—2)(Wn-1)

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Neural Language Models: Training

Calculating the gradients is straightforward with back propagation:
oOF 1 < dcost,, 0P, OF 1 < Jdcost, 0p, Oh,

oW~ 4 op, OW ° OV 4 9p, Oh, OV

n=1 n=1

C_) C) C_h) (C_ k)
27 RN\ 2 RN 27 RN 27 RN\
(w_1)(Cwo) Cwo (w1) (w1 (w2) (w2 H)(ws)

Note that calculating the gradients for each time step n is independent of
all other timesteps, as such they are calculated in parallel and summed.

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Comparison with Count Based N-Gram LMs

Good

e Better generalisation on unseen n-grams, poorer on seen n-grams.
Solution: direct (linear) ngram features.

e Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla n-gram cousins (though not if you use
the linear features suggested above!).

Bad

e The number of parameters in the model scales with the n-gram size
and thus the length of the history captured.

e The n-gram history is finite and thus there is a limit on the longest
dependencies that an be captured.

e Mostly trained with Maximum Likelihood based objectives which do
not encode the expected frequencies of words a priori.

[Slide: Phil Blunsom]

Tuesday, February 6, 18

https://github.com/oxford-cs-deepnlp-2017/lectures
https://github.com/oxford-cs-deepnlp-2017/lectures

Training NNs

® Dropout (preferred regularization method)
® Minibatching
® Parallelization (GPUs)

® | ocal optima?

26

Tuesday, February 6, 18

Local models Long-history models
W | We—2, W1 Wy | Wi, ... Wi

Fully observed
direct word models

Latent-class
direct word models

Markovian neural LM Recurrent neural LM

27

Tuesday, February 6, 18

