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Figure 1: Expression graph for the normal log density function given in (1). Each

circle corresponds to an automatic di↵erentiation variable, with the variable name

given to the right in blue. The independent variables are highlighted in yellow on

the bottom row, with the dependent variable highlighted in red on the top of the

graph. The function producing each node is displayed inside the circle, with operands

denoted by arrows. Constants are shown in gray with gray arrows leading to them

because derivatives need not be propagated to constant operands.

The mathematical formula for the normal log density corresponds to the
expression graph in Figure 1. Each subexpression corresponds to a node in
the graph, and each edge connects the node representing a function evaluation
to its operands. Becuase � is used twice in the formula, it has two parents in
the graph.

Figure 2 illustrates the forward pass used by reverse-mode automatic dif-
ferentiation to construct the expression graph for a program. The expression
graph is constructed in the ordinary evaluation order, with each subexpression
being numbered and placed on a stack. The stack is initialized here with the
dependent variables, but this is not required. Each operand to an expression
is evaluated before the expression node is created and placed on the stack. As
a result, the stack provides a topological sort of the nodes in the graph (i.e., a
sort in which each node representing an expression occurs above its subexpres-
sion nodes in the stack—see (Knuth, 1997, Section 2.2.3)). Figure 2 lists in the
right column for each node, the partial derivative of the function represented
by the node with respect to its operands. In the Stan Math Library, most of
these partials are evaluated lazily during the reverse pass based on function’s
value and its operands’ values.

Figure 3 shows the processing for reverse mode, which involves an adjoint
value for each node. The adjoints for all nodes other than the root are ini-
tialized to 0; the root’s adjoint is initialized to 1, because @x/@x = 1. The
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In one pass over the expression graph, forward-mode computes a directional
derivative of any number of output (dependent) variables with respect to a
vector of input (independent) variables and direction ~v; the special case of a
derivative with respect to a single independent variable computes a column of
the Jacobian of a multivariate function. The proof follows a simple inductive
argument starting from the inputs and working forward to the output(s).

In reverse-mode automatic di↵erentiation, each node k in the expression
graph contains a value xk and an adjoint ak, representing the derivative of a
single output node with respect to xk. The distinguished output node’s adjoint
is initialized to 1, because its derivative with respect to itself is 1. The full set
of adjoint values is calculated by propagating backwards from the outputs to
the inputs via

aj =
X

i2parents[j]

@xi

@xj
ai.

This enables the derivative of a single output variable to be done with respect
to multiple input variables in a single pass over the expression graph. A proof
of correctness follows by induction starting from the base case of the single
output variable and working back to the input variables. This computes a
gradient with respect to a single output function or one row of the Jacobian
of a multi-output function.

Both forward- and reverse-mode require partial derivatives of each node xi

in the expression graph with respect to its daughters xj.
Because gradients are more prevalent in contemporary algorithms, reverse-

mode automatic di↵erentiation tends to be the most e�cient approach in prac-
tice. In this section we take a more detailed look at reverse-mode automatic
di↵erentiation and compare it to other di↵erential algorithms.

1.1. Mechanics of Reverse-Mode Automatic Di↵erentiation

As an example, consider the log of the normal probability density function for
a variable y with a normal distribution with mean µ and standard deviation
�,

f(y, µ, �) = log (Normal(y|µ, �)) = �1

2
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and its gradient,
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(y, µ, �) = (y � µ)��2 (2)
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.
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Reverse mode

Forward mode

[Other strategies:
symbolic differentiation,

finite differences]

C++ (03) and has been tested for all major compilers for Windows,

Mac OS X, and Linux. It is distributed under the new BSD license.

This paper provides an overview of the Stan Math Library’s applica-

tion programming interface (API), examples of its use, and a thorough

explanation of how it is implemented. It also demonstrates the e�-

ciency and scalability of the Stan Math Library by comparing its speed

and memory usage of gradient calculations to that of several popular

open-source C++ automatic di↵erentiation systems (Adept, Adol-C,

CppAD, and Sacado), with results varying dramatically according to

the type of expression being di↵erentiated.

1. Reverse-Mode Automatic Di↵erentiation

Many contemporary algorithms require the evaluation of a derivative of a given
di↵erentiable function, f , at a given input value, (x1, . . . , xN), for example a
gradient, ✓

@f

@x1
(x1, . . . , xN) , · · · , @f

@xN
(x1, . . . , xN)

◆
,

or a directional derivative,1

~v(f) (x1, . . . , xN) =
NX

n=1

vn
@f

@xn
(x1, . . . , xN) .

Automatic di↵erentiation computes these values automatically, using only a
representation of f as a computer program. For example, automatic di↵erenti-
ation can take a simple C++ expression such as x * y / 2 with inputs x = 6
and y = 4 and produce both the output value, 12, and the gradient, (2, 3).

Automatic di↵erentiation is implemented in practice by transforming the
subexpressions in the given computer program into nodes of an expression
graph (see Figure 1, below, for an example), and then propagating chain rule
evaluations along these nodes (Griewank and Walther, 2008; Giles, 2008). In
forward-mode automatic di↵erentiation, each node k in the graph contains
both a value xk and a tangent, tk, which represents the directional derivative
of xk with respect to the input variables. The tangent values for the input
values are initialized with values ~v, because that represents the appropriate
directional derivative of each input variable. The complete set of tangent
values is calculated by propagating tangents forward from the inputs to the
outputs with the rule

ti =
X

j2children[i]

@xi

@xj
tj.

1A special case of a directional derivative computes derivatives with respect to a single
variable by setting ~v to a vector with a value of 1 for the single distinguished variable and
0 for all other variables.
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Goal: compute

output

input
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Forward mode
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Automatic di↵erentiation in machine learning: a survey 9

Table 2 Forward mode AD example, with y = f(x1, x2) = ln(x1) + x1x2 � sin(x2) at

(x1, x2) = (2, 5) and setting ẋ1 = 1 to compute @y

@x1
. The original forward run on the left

is augmented by the forward AD operations on the right, where each line supplements the
original on its left.

Forward Evaluation Trace

v�1 = x1 = 2

v0 = x2 = 5

v1 = ln v�1 = ln 2

v2 = v�1⇥v0 = 2⇥ 5

v3 = sin v0 = sin 5

v4 = v1 + v2 = 0.693 + 10

v5 = v4 � v3 = 10.693 + 0.959

y = v5 = 11.652

Forward Derivative Trace

v̇�1 = ẋ1 = 1

v̇0 = ẋ2 = 0

v̇1 = v̇�1/v�1 = 1/2

v̇2 = v̇�1⇥v0+v̇0⇥v�1 = 1⇥5+0⇥2

v̇3 = v̇0 ⇥ cos v0 = 0⇥ cos 5

v̇4 = v̇1 + v̇2 = 0.5 + 5

v̇5 = v̇4 � v̇3 = 5.5� 0

ẏ = v̇

5

= 5.5

each intermediate variable v
i

a derivative

v̇
i

=
@v

i

@x1
.

Applying the chain rule to each elementary operation in the forward evalu-
ation trace, we generate the corresponding derivative trace, given on the right
hand side of Table 2. Evaluating variables v

i

one by one together with their
corresponding v̇

i

values gives us the required derivative in the final variable
v̇5 = @y

@x1
.

This generalizes naturally to computing the Jacobian of a function f :
Rn ! Rm with n independent variables x

i

and m dependent variables y
j

.
In this case, each forward pass of AD is initialized by setting only one of
the variables ẋ

i

= 1 (in other words, setting ẋ = e
i

, where e
i

is the i-th unit
vector). A run of the code with specific input values x = a would then compute

ẏ
j

=
@y

j

@x
i

����
x=a

, j = 1, . . . ,m ,

giving us one column of the Jacobian matrix

J
f

=

2

64

@y1

@x1
· · · @y1

@x

n

...
. . .

...
@y

m

@x1
· · · @y

m

@x

n

3

75

�������
x = a

evaluated at point a. Thus, the full Jacobian can be computed in n evaluations.
Furthermore, forward mode AD provides a very e�cient and matrix-free

way of computing Jacobian-vector products

J
f

r =

2

64

@y1

@x1
· · · @y1

@x

n

...
. . .

...
@y

m

@x1
· · · @y

m

@x

n

3

75

2

64
r1
...
r
n

3

75 , (4)

Need to select which input you want derivative for
At each step calculate: (v, v’)
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Reverse mode
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Table 3 Reverse mode AD example, with y = f(x1, x2) = ln(x1) + x1x2 � sin(x2) at
(x1, x2) = (2, 5). After running the original forward run on the left, the augmented AD

operations on the right are run in reverse (cf. Fig. 1). Both @y

@x1
and @y

@x2
are computed in

the same reverse sweep, starting from the adjoint v̄5 = ȳ = @y

@y

= 1.

Forward Evaluation Trace

v�1= x1 = 2

v0 = x2 = 5

v1 = ln v�1 = ln 2

v2 = v�1⇥v0= 2⇥ 5

v3 = sin v0 = sin 5

v4 = v1 + v2 = 0.693 + 10

v5 = v4 � v3 = 10.693+0.959

y = v5 = 11.652

Reverse Adjoint Trace

x̄

1

= v̄�1

= 5.5

x̄

2

= v̄

0

= 1.716

v̄�1= v̄�1+ v̄1
@v1
@v�1

= v̄�1+v̄1/v�1= 5.5

v̄0 = v̄0 + v̄2
@v2
@v0

= v̄0+ v̄2⇥v�1= 1.716

v̄�1= v̄2
@v2
@v�1

= v̄2 ⇥ v0 = 5

v̄0 = v̄3
@v3
@v0

= v̄3 ⇥ cos v0 = �0.284

v̄2 = v̄4
@v4
@v2

= v̄4 ⇥ 1 = 1

v̄1 = v̄4
@v4
@v1

= v̄4 ⇥ 1 = 1

v̄3 = v̄5
@v5
@v3

= v̄5 ⇥ (�1) = �1

v̄4 = v̄5
@v5
@v4

= v̄5 ⇥ 1 = 1

v̄5 = ȳ = 1

that the only ways it can a↵ect y are through v2 and v3, so its contribution to
the change in y is given by

@y

@v0
=

@y

@v2

@v2
@v0

+
@y

@v3

@v3
@v0

or v̄0 = v̄2
@v2
@v0

+ v̄3
@v3
@v0

.

In Table 3, this contribution is computed in two incremental steps

v̄0 = v̄3
@v3
@v0

and v̄0 = v̄0 + v̄2
@v2
@v0

,

grouped with the line in the original trace from which it originates.
After the forward sweep on the left hand side, we run the reverse sweep of

the adjoints on the right hand side, starting with v̄5 = ȳ = @y

@y

= 1. In the end

we get the derivatives @y

@x1
= x̄1 and @y

@x2
= x̄2 in just one reverse sweep.

Compared with the straightforward simplicity of forward accumulation
mode, reverse mode AD can, at first, appear somewhat “mysterious” (Den-
nis and Schnabel, 1996). Griewank and Walther (2008) argue that this is in
part because of the common acquaintance with the chain rule as a mechanical
procedure propagating derivatives forward.

An important advantage of the reverse mode is that it is significantly less
costly to evaluate (in terms of operation count) than the forward mode for
functions with a large number of input variables. In the extreme case of f :
Rn ! R, only one application of the reverse mode is su�cient to compute

the full gradient rf =
⇣

@y

@x1
, . . . , @y

@x

n

⌘
, compared with the n sweeps of the

forward mode needed for the same.
In general, for a function f : Rn ! Rm, if we denote the operation count to

evaluate the original function by ops(f), the time it takes to calculate them⇥n

One sweep for gradient of f: R^n -> R
Thursday, April 20, 17



• All autodiff frameworks: write objective declaratively; 
gradients automatic

• Strategies

• Statically compile a single computation graph  (Theano, 
Tensorflow, Stan...)

• Reapply graph to every datapoint

• Dynamically make new graphs
(DyNet, PyTorch...)

• Different length sequences, parse trees, states within automaton 
data structures (e.g. shift-reduce) ...

• Uses

• Stan: statistical modeling.  MAP, Variational Bayes, MCMC

• Currently in NLP, mostly just for NNs: MAP GD

• Others possible?
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