
Constituent Parsing (3/9)

CS 690N, Spring 2017
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, March 9, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

• PCFG and CRF-CFG models:

• Only allow interactions between parents and direct
children

• Key enhancement: state splitting to propagate
information from above and below

• Extension: use unlabeled data

• Alternatives

• Whole-tree models

• History-based models

2

Thursday, March 9, 17

Semi-supervised training

• Data

• Labeled data (x,y) pairs +

• Unlabeled data (x)

• EM for semi-supervised learning

• Initialize with supervised model on labeled data

• Assume latent y for unlabeled data; optimize total log-likelihood

• Well-defined only for generative models

• Trickiness with objective balancing

• Self-training: just use 1-best inferences on unlabeled data
(“hard EM”)

• Variants: only use high-confidence predictions... etc.

• “Bootstrapping” / “Bootstrapped learning”

• Improves performance [McClosky et al. 2006]

3

Thursday, March 9, 17

Discriminative re-ranking

• No more PCFG: Why not use a log-linear
model with whole-tree features?

• Now CKY is no longer possible. Why?

• Make it fast with re-ranking:

• Take top-K trees from a PCFG.

• Extract features for each, and re-rank them.

• Re-ranking is a very powerful general technique
in NLP

• Simple, fast model generates candidates

• Slow, more accurate model decides the best one

4

Thursday, March 9, 17

Whole-tree discrim. models

• Log-linear features [Johnson and Charniak 2005]

• Does this NP contain 15-20 words? Right-branching tendencies?

• Tree-structured recursive NNs [Socher et al. 2013]

• Compare to head rules for lexicalization

• Alternate application: hierarchical phrase sentiment analysis

5

Parsing with Compositional Vector Grammars

Richard Socher John Bauer Christopher D. Manning Andrew Y. Ng
Computer Science Department, Stanford University, Stanford, CA 94305, USA

richard@socher.org, horatio@gmail.com, manning@stanford.edu, ang@cs.stanford.edu

Abstract

Natural language parsing has typically
been done with small sets of discrete cat-
egories such as NP and VP, but this rep-
resentation does not capture the full syn-
tactic nor semantic richness of linguistic
phrases, and attempts to improve on this
by lexicalizing phrases or splitting cate-
gories only partly address the problem at
the cost of huge feature spaces and sparse-
ness. Instead, we introduce a Compo-
sitional Vector Grammar (CVG), which
combines PCFGs with a syntactically un-
tied recursive neural network that learns
syntactico-semantic, compositional vector
representations. The CVG improves the
PCFG of the Stanford Parser by 3.8% to
obtain an F1 score of 90.4%. It is fast
to train and implemented approximately as
an efficient reranker it is about 20% faster
than the current Stanford factored parser.
The CVG learns a soft notion of head
words and improves performance on the
types of ambiguities that require semantic
information such as PP attachments.

1 Introduction

Syntactic parsing is a central task in natural lan-
guage processing because of its importance in me-
diating between linguistic expression and mean-
ing. For example, much work has shown the use-
fulness of syntactic representations for subsequent
tasks such as relation extraction, semantic role la-
beling (Gildea and Palmer, 2002) and paraphrase
detection (Callison-Burch, 2008).

Syntactic descriptions standardly use coarse
discrete categories such as NP for noun phrases
or PP for prepositional phrases. However, recent
work has shown that parsing results can be greatly
improved by defining more fine-grained syntactic

(riding,V,) (a,Det,) (bike,NN,)

(a bike,NP,)

(riding a bike,VP,)

Discrete Syntactic – Continuous Semantic
Representations in the Compositional Vector Grammar

Figure 1: Example of a CVG tree with (cate-
gory,vector) representations at each node. The
vectors for nonterminals are computed via a new
type of recursive neural network which is condi-
tioned on syntactic categories from a PCFG.

categories, which better capture phrases with simi-
lar behavior, whether through manual feature engi-
neering (Klein and Manning, 2003a) or automatic
learning (Petrov et al., 2006). However, subdi-
viding a category like NP into 30 or 60 subcate-
gories can only provide a very limited represen-
tation of phrase meaning and semantic similarity.
Two strands of work therefore attempt to go fur-
ther. First, recent work in discriminative parsing
has shown gains from careful engineering of fea-
tures (Taskar et al., 2004; Finkel et al., 2008). Fea-
tures in such parsers can be seen as defining effec-
tive dimensions of similarity between categories.
Second, lexicalized parsers (Collins, 2003; Char-
niak, 2000) associate each category with a lexical
item. This gives a fine-grained notion of semantic
similarity, which is useful for tackling problems
like ambiguous attachment decisions. However,
this approach necessitates complex shrinkage esti-
mation schemes to deal with the sparsity of obser-
vations of the lexicalized categories.

In many natural language systems, single words
and n-grams are usefully described by their distri-
butional similarities (Brown et al., 1992), among
many others. But, even with large corpora, many

Thursday, March 9, 17

Shift-reduce parsing
• One form of left-to-right / top-down parsing

• Incrementally build up the parse tree, scanning words left-to-right.

• Parser as a state machine

• No dynamic programming! O(n) runtime!

• Potentially related to cognitive processing?

• Most practically efficient for constituent parsing -- e.g. zpar and
CoreNLP implementations

Thursday, March 9, 17

Ratnaparkhi (1998)

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

Example from a similar incremental parser (slightly different than current work)

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes

 no

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes (REDUCE)

 no

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes

 no

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes

 no (SHIFT)

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

 JOIN S

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

 JOIN S

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes

 no

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Check:

 yes

 no (SHIFT)

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

Build:

 START NP

 START VP

 START S

 …

 JOIN VP
NP

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

NP

Check:

 yes

 no (SHIFT)

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

NP

Build:

 START NP

 START VP

 START S

 …

 JOIN NP

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB DT NNS PRP NNSPN

I hit the cats on mats

PRP NNS

with bats

NP

Check:

 yes

 no (SHIFT)

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Ratnaparkhi (1998)
S

NP VP

VB

NP

PP

DT NNS PRP NNSPN

I hit the cats on mats

PP

PRP NNS

with bats

[Slides: Noah Smith]
Thursday, March 9, 17

http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf
http://www.ark.cs.cmu.edu/LS2/images/8/83/Lecture.13-10-2009.pdf

Shift-reduce parsing
• State machine: stack and buffer

• Decide on one of 3 actions

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

[Dyer et al. 2016]
Thursday, March 9, 17

https://arxiv.org/pdf/1602.07776.pdf
https://arxiv.org/pdf/1602.07776.pdf

Generation as well

25

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence. [Dyer et al. 2016]
Thursday, March 9, 17

https://arxiv.org/pdf/1602.07776.pdf
https://arxiv.org/pdf/1602.07776.pdf

• Models for shift-reduce

• Any (P)CFG can be parsed in this manner [Stolcke 1995]

• History based models: select next action given information
about current state and history

• Infinite history, no future (contrast to PCFG assumptions!)

• a: action

• u: features/embedding of current state

• Generative form (discriminative also possible):

26

Shift-reduce parsing

suming the availability of constant time push and
pop operations, the runtime is linear in the number
of the nodes in the parse tree that is generated by
the parser/generator (intuitively, this is true since al-
though an individual REDUCE operation may require
applying a number of pops that is linear in the num-
ber of input symbols, the total number of pop opera-
tions across an entire parse/generation run will also
be linear). Since there is no way to bound the num-
ber of output nodes in a parse tree as a function of
the number of input words, stating the runtime com-
plexity of the parsing algorithm as a function of the
input size requires further assumptions. Assuming
our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models
Our generation algorithm algorithm differs from
previous stack-based parsing/generation algorithms
in two ways. First, it constructs rooted tree struc-
tures top down (rather than bottom up), and sec-
ond, the transition operators are capable of directly
generating arbitrary tree structures rather than, e.g.,
assuming binarized trees, as is the case in much
prior work that has used transition-based algorithms
to produce phrase-structure trees (Sagae and Lavie,
2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-
sented to define a joint distribution on syntax trees
(y) and words (x). This distribution is defined as a
sequence model over generator transitions that is pa-
rameterized using a continuous space embedding of
the algorithm state at each time step (ut); i.e.,

p(x, y) =

|a(x,y)|Y

t=1

p(at | a<t)

=

|a(x,y)|Y

t=1

exp r

>
atut + batP

a02AG(Tt,St,nt) exp r

>
a0ut + ba0

,

and where action-specific embeddings ra and bias
vector b are parameters in ⇥.

The representation of the algorithm state at time
t, ut, is computed by combining the representation
of the generator’s three data structures: the output
buffer (Tt), represented by an embedding ot, the
stack (St), represented by an embedding st, and the

history of actions (a<t) taken by the generator, rep-
resented by an embedding ht,

ut = tanh (W[ot; st;ht] + c) ,

where W and c are parameters. Refer to Figure 5
for an illustration of the architecture.

The output buffer, stack, and history are se-
quences that grow unboundedly, and to obtain rep-
resentations of them we use recurrent neural net-
works to “encode” their contents (Cho et al., 2014).
Since the output buffer and history of actions are
only appended to and only contain symbols from a
finite alphabet, it is straightforward to apply a stan-
dard RNN encoding architecture. The stack (S) is
more complicated for two reasons. First, the ele-
ments of the stack are more complicated objects than
symbols from a discrete alphabet: open nontermi-
nals, terminals, and full trees, are all present on the
stack. Second, it is manipulated using both push and
pop operations. To efficiently obtain representations
of S under push and pop operations, we use stack
LSTMs (Dyer et al., 2015). To represent complex
parse trees, we define a new syntactic composition
function that recursively defines representations of
trees.

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser
pops a sequence of completed subtrees and/or to-
kens (together with their vector embeddings) from
the stack and makes them children of the most recent
open nonterminal on the stack, “completing” the
constituent. To compute an embedding of this new
subtree, we use a composition function based on
bidirectional LSTMs, which is illustrated in Fig. 6.

NP

u v w

NP
u v w

NP

x

x

Figure 6: Syntactic composition function based on bidirec-
tional LSTMs that is executed during a REDUCE operation; the
network on the right models the structure on the left.

[Dyer et al. 2016]
Thursday, March 9, 17

https://arxiv.org/pdf/1602.07776.pdf
https://arxiv.org/pdf/1602.07776.pdf

The hungry cat

NP (VP(S
RE

DU
CE

GE
N

NT
(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Tt� �� �St� �� �

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and
history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the
stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

The first vector read by the LSTM in both the for-
ward and reverse directions is an embedding of the
label on the constituent being constructed (in the fig-
ure, NP). This is followed by the embeddings of the
child subtrees (or tokens) in forward or reverse or-
der. Intuitively, this order serves to “notify” each
LSTM what sort of head it should be looking for as it
processes the child node embeddings. The final state
of the forward and reverse LSTMs are concatenated,
passed through an affine transformation and a tanh

nonlinearity to become the subtree embedding.5 Be-
cause each of the child node embeddings (u, v, w in
Fig. 6) is computed similarly (if it corresponds to an
internal node), this composition function is a kind of
recursive neural network.

4.2 Word Generation

To reduce the size of AG(S, T, n), word genera-
tion is broken into two parts. First, the decision to
generate is made (by predicting GEN as an action),
and then choosing the word, conditional on the cur-
rent parser state. To further reduce the computa-
tional complexity of modeling the generation of a
word, we use a class-factored softmax (Baltescu and
Blunsom, 2015; Goodman, 2001). By using

p
|⌃|

classes for a vocabulary of size |⌃|, this prediction

5We found the many previously proposed syntactic compo-
sition functions inadequate for our purposes. First, we must
contend with an unbounded number of children, and many
previously proposed functions are limited to binary branching
nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those
that could deal with n-ary nodes made poor use of nonterminal
information (Tai et al., 2015), which is crucial for our task.

step runs in time O(

p
|⌃|) rather than the O(|⌃|) of

the full-vocabulary softmax. To obtain clusters, we
use the greedy agglomerative clustering algorithm
of Brown et al. (1992).

4.3 Training

The parameters in the model are learned to maxi-
mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by
replacing the embedding of Tt at each time step with
an embedding of the input buffer Bt. To train this
model, the conditional likelihood of each sequence
of actions given the input string is maximized.6

5 Inference via Importance Sampling

Our generative model p(x, y) defines a joint dis-
tribution on trees (y) and sequences of words (x).
To evaluate this as a language model, it is neces-
sary to compute the marginal probability p(x) =P

y

02Y(x) p(x, y0
). And, to evaluate the model as

a parser, we need to be able to find the MAP parse
tree, i.e., the tree y 2 Y(x) that maximizes p(x, y).
However, because of the unbounded dependencies
across the sequence of parsing actions in our model,
exactly solving either of these inference problems
is intractable. To obtain estimates of these, we use

6For the discriminative parser, the POS tags are processed
similarly as in (Dyer et al., 2015); they are predicted for English
with the Stanford Tagger (Toutanova et al., 2003) and Chinese
with Marmot (Mueller et al., 2013).

• Vector representation of current stack/buffer state

• Explicit log-linear features over the current stack, buffer etc.
[Ratnaparkhi 1998, Zhang+Clark 2011]

• Neural network representation of current state [e.g. Henderson 2004,
Dyer et al. 2016, Bowman et al. 2016]

• Training: extract oracle decisions paths from labeled data

• Generative model: use importance sampling to calculate feature
expectations

27 [Dyer et al. 2016]
Thursday, March 9, 17

https://arxiv.org/pdf/1602.07776.pdf
https://arxiv.org/pdf/1602.07776.pdf

Results

28

Latent
state-split
PCFG (EM
training)

Recurs. NN

Self-training

Corrigendum to Recurrent Neural Network Grammars

Abstract
Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and
Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)

† – buggy D 89.8
Generative, p̂(y | x)

† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

Corrigendum to Recurrent Neural Network Grammars

Abstract
Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and
Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)

† – buggy D 89.8
Generative, p̂(y | x)

† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

Thursday, March 9, 17

29

generative model.10

Table 2: Parsing results on PTB §23 (D=discriminative,
G=generative, S=semisupervised). ? indicates the (Vinyals et
al., 2015) result with trained only on the WSJ corpus without
ensembling.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) – single S 92.1
Discriminative, q(y | x) D 89.8
Generative, p̂(y | x) G 92.4

Chinese parsing results. Chinese parsing results
were obtained with the same methodology as in En-
glish and show the same pattern (Table 6).

Table 3: Parsing results on CTB 5.1.
Model type F1

Zhu et al. (2013) D 82.6
Wang et al. (2015) D 83.2
Huang and Harper (2009) D 84.2
Charniak (2000) G 80.8
Bikel (2004) G 80.6
Petrov and Klein (2007) G 83.3
Zhu et al. (2013) S 85.6
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y | x) D 80.7
Generative, p̂(y | x) G 82.7

Language model results. We report held-out per-
word perplexities of three language models, both se-
quential and syntactic. Log probabilities are normal-
ized by the number of words (excluding the stop

10The value ↵ = 0.8 was chosen based on the diversity of
the samples generated on the development set.

symbol), inverted, and exponentiated to yield the
perplexity. Results are summarized in Table 4.

Table 4: Language model perplexity results.

Model test ppl (PTB) test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG 102.4 171.9

7 Discussion

It is clear from our experiments that the proposed
generative model is quite effective both as a parser
and as a language model. This is the result of
(i) relaxing conventional independence assumptions
(e.g., context-freeness) and (ii) inferring continu-
ous representations of symbols alongside non-linear
models of their syntactic relationships. The most
significant question that remains is why the dis-
criminative model—which has more information
available to it than the generative model—performs
worse than the generative model. This pattern has
been observed before in neural parsing by Hender-
son (2004), who hypothesized that larger, unstruc-
tured conditioning contexts are harder to learn from,
and provide opportunities to overfit. Our discrimi-
native model conditions on the entire history, stack,
and buffer, while our generative model only ac-
cesses the history and stack. The fully discrimina-
tive model of Vinyals et al. (2015) was able to obtain
results similar to those of our generative model (al-
beit using much larger training sets obtained through
semisupervision) but similar results to those of our
discriminative parser using the same data. In light of
their results, we believe Henderson’s hypothesis is
correct, and that generative models should be con-
sidered as a more statistically efficient method for
learning neural networks from small data.

8 Related Work

Our language model combines work from two mod-
eling traditions: (i) recurrent neural network lan-
guage models and (ii) syntactic language model-
ing. Recurrent neural network language models
use RNNs to compute representations of an un-
bounded history of words in a left-to-right language
model (Zaremba et al., 2015; Mikolov et al., 2010;

Figure 7: Correct RNNG composition function for the con-
stituent (NP the hungry cat).

Figure 8: Buggy implementation of the RNNG composition
function for the constituent (NP the hungry cat). Note that
the right-most child, cat, has been replaced by a second NP.

Model type F1

Zhu et al. (2013) D 82.6
Wang et al. (2015) D 83.2
Huang and Harper (2009) D 84.2
Charniak (2000) G 80.8
Bikel (2004) G 80.6
Petrov and Klein (2007) G 83.3
Zhu et al. (2013) S 85.6
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y | x)

† - buggy D 80.7
Generative, p̂(y | x)

† - buggy G 82.7
Discriminative, q(y | x) – correct D 84.6
Generative, p̂(y | x) – correct G 86.9

Table 6: Parsing results on CTB 5.1 including results with the
buggy composition function implementation (indicated by †)
and with the correct implementation.

Model test ppl (PTB) test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG – buggy† 102.4 171.9
RNNG – correct 105.2 148.5

Table 7: PTB and CTB language modeling results including re-
sults with the buggy composition function implementation (in-
dicated by †) and with the correct implementation.

Thursday, March 9, 17

Look out for bugs.

30

Corrigendum to Recurrent Neural Network Grammars

Abstract
Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and
Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)

† – buggy D 89.8
Generative, p̂(y | x)

† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

Corrigendum to Recurrent Neural Network Grammars

Abstract
Due to an implentation bug in the RNNG’s
recursive composition function, the results re-
ported in Dyer et al. (2016) did not correspond
to the model as it was presented. This corri-
gendum describes the buggy implementation
and reports results with a corrected implemen-
tation. After correction, on the PTB §23 and
CTB 5.1 test sets, respectively, the generative
model achieves language modeling perplexi-
ties of 105.2 and 148.5, and phrase-structure
parsing F1 of 93.3 and 86.9, a new state of
the art in phrase-structure parsing for both lan-
guages.

RNNG Composition Function and
Implementation Error

The composition function reduces a completed con-
stituent into a single vector representation using a
bidirectional LSTM (Figure 7) over embeddings of
the constituent’s children as well as an embedding of
the resulting nonterminal symbol type. The imple-
mentation error (Figure 8) composed the constituent
(NP the hungry cat) by reading the sequence “NP the
hungry NP”, that is, it discarded the rightmost child
of every constituent and replaced it with a second
copy of the constituent’s nonterminal symbol. This
error occurs for every constituent and means crucial
information is not properly propagated upwards in
the tree.

Results after Correction

The implementation error affected both the gener-
ative and discriminative RNNGs.11 We summarize
corrected English phrase-structure PTB §23 parsing
result in Table 5, Chinese (CTB 5.1 §271–300) in
Table 6 (achieving the the best reported result on
both datasets), and English and Chinese language
modeling perplexities in Table 7. The consider-
able improvement in parsing accuracy indicates that

11The discriminative model can only be used for parsing and
not for language modeling, since it only models p(y | x).

properly composing the constituent and propagat-
ing information upwards is crucial. Despite slightly
higher language modeling perplexity on PTB §23,
the fixed RNNG still outperforms a highly optimized
sequential LSTM baseline.

Model type F1

Vinyals et al. (2015)? – WSJ only D 88.3
Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) S 92.1
Discriminative, q(y | x)

† – buggy D 89.8
Generative, p̂(y | x)

† – buggy G 92.4
Discriminative, q(y | x) – correct D 91.7
Generative, p̂(y | x) – correct G 93.3

Table 5: Parsing results with fixed composition function on
PTB §23 (D=discriminative, G=generative, S=semisupervised).
? indicates the (Vinyals et al., 2015) model trained only on the
WSJ corpus without ensembling. † indicates RNNG models
with the buggy composition function implementation.

• Even the experts have bugs!

• Many, MANY unreported
bugs in results are likely out
there

• Replication and
reimplementation are often
good ways of finding them

Thursday, March 9, 17

• stopped here 3/9

31

Thursday, March 9, 17

Treebanks

• Know what you’re getting!

• Formalism?

• Annotation assumptions?

• Penn Treebank (constituents, English)

• http://www.cis.upenn.edu/~treebank/home.html

• Recent revisions in Ontonotes

• Chinese Treebank ... many others

• Universal Dependencies

• http://universaldependencies.org/

• CCG Treebank

• Prague Treebank (syn+sem)

• ...many others...

32

Thursday, March 9, 17

http://www.cis.upenn.edu/~treebank/home.html
http://www.cis.upenn.edu/~treebank/home.html
http://universaldependencies.org/
http://universaldependencies.org/

