
CFG Parsing (3/7)

CS 690N, Spring 2017
Advanced Natural Language Processing

http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Thursday, March 9, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

• Types of (P)CFG parsing algorithms

• Top-down

• Left-to-right

• Bottom-up: CKY algorithm

• Naive approach: Number of parses is Catalan
number in length!

2

Chapter 11

CFG Parsing

Parsing is the task of identifying the correct derivation for a sentence in a context-free
language. Here are some possible approaches:

Top-down Start with the start symbol, and see if it is possible derive the sentence.

Bottom-up Combine the observed symbols using productions from the grammar, replac-
ing them with the appropriate left-hand side. Continue applying this process until
only the start symbol is left.

Left-to-right Move through the input, incrementally building a parse tree.

Before we get into these different possibilities, let us consider whether exhaustive
search is possible. Suppose we only have one non-terminal, X, and it has binary pro-
ductions

X !X X
X !the girl | ate sushi | . . .

How many different ways could we derive a sentence in this language? This is equal to
the number of binary bracketings of the words in the sentence, which is a Catalan number.
Catalan numbers grow super-exponentially in the length of the sentence, C

n

= (2n)!

(n+1)!n!

.
As with sequence labeling, we cannot search the space of possible derivations naı̈vely; we
will again rely on dynamic programming to search efficiently by reusing shared substruc-
tures.

193

Thursday, March 9, 17

CKY

3

0:1

For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] (Recognizer)
 ... or ...

yummy foods store

0:2

0:3

2:3

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

1:2

1:3

Adj NP NP

NP NP

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.add (A,B,C, k) to cell [i,j] (Parser)

0 1 2 3

NPNP

Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,2)?

Put together C(1,1)

and C(2,2).

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,3)?

One way …

Another way.

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

Visualizing Probabilistic CKY

1 2 3 n

How do we fill in C(1,n)?

n - 1 ways!

O(G n^3)

G = grammar
constant

For cell [i,j]
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] Computational

Complexity ?

[Example from Noah Smith]
Thursday, March 9, 17

• Problem with a boolean grammar: Ambiguities!

11

196 CHAPTER 11. CFG PARSING

Time The time complexity is O(M3#|R|). At each cell, we search over O(M) split points,
and #|R| productions, where #|R| is the number of production rules in the gram-
mar.

Notice that these are considerably worse than the finite-state algorithms of Viterbi and
forward-backward, which are linear time; generic shortest-path for finite-state automata
has complexity O(M log M). As usual, these are worst-case asymptotic complexities. But
in practice, things can be worse than worst-case! (See Figure 11.2) This is because longer
sentences tend to “unlock” more of the grammar — they involve non-terminals that do
not appear in shorter sentences.

Figure 11.2: Figure from Dan Klein’s lecture slides

11.2 Ambiguity in parsing

In many applications, we don’t just want to know whether a sentence is grammatical, we
want to know what structure is the best analysis. Unfortunately, syntactic ambiguity is
endemic to natural language:2

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.

Modifier scope southern food store

Particle versus preposition The puppy tore up the staircase.

Complement structure The tourists objected to the guide that they couldn’t hear.

Coordination scope “I see,” said the blind man, as he picked up the hammer and saw.

Multiple gap constructions The chicken is ready to eat

These forms of ambiguity can combine, so that a seemingly simple sentence like Fed
raises interest rates can have dozens of possible analyses, even in a minimal grammar. Real-
size broad coverage grammars permit millions of parses of typical sentences. Faced with
this ambiguity, classical parsers faced a tradeoff:

2Examples borrowed from Dan Klein’s slides

(c) Jacob Eisenstein 2014-2017. Work in progress.[Examples from Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Probabilistic CFGs

12

• Defines a probabilistic generative process for words in a sentence

• Extension of HMMs, strictly speaking

• (How to learn? Fully supervised with a treebank... EM for unsup...)

DR
AF
T

Section 14.1. Probabilistic Context-Free Grammars 3

S → NP VP [.80] Det → that [.10] | a [.30] | the [.60]
S → Aux NP VP [.15] Noun → book [.10] | flight [.30]
S → VP [.05] | meal [.15] | money [.05]
NP → Pronoun [.35] | flights [.40] | dinner [.10]
NP → Proper-Noun [.30] Verb → book [.30] | include [.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun → I [.40] | she [.05]
Nominal → Noun [.75] | me [.15] | you [.40]
Nominal → Nominal Noun [.20] Proper-Noun → Houston [.60]
Nominal → Nominal PP [.05] | TWA [.40]
VP → Verb [.35] Aux → does [.60] | can [40]
VP → Verb NP [.20] Preposition → from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near [.15]
VP → Verb PP [.15] | through [.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFGwhich is a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon of Fig. ?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since any real corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of the L1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to be consistent if the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due to derivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-

[J&M textbook]
Thursday, March 9, 17

13

((S
 (NP-SBJ (NNP General) (NNP Electric) (NNP Co.))
 (VP (VBD said)
 (SBAR (-NONE- 0)
 (S
 (NP-SBJ (PRP it))
 (VP (VBD signed)
 (NP
 (NP (DT a) (NN contract))
 (PP (-NONE- *ICH*-3)))
 (PP (IN with)
 (NP
 (NP (DT the) (NNS developers))
 (PP (IN of)
 (NP (DT the) (NNP Ocean) (NNP State) (NNP Power) (NN project)))))
 (PP-3 (IN for)
 (NP
 (NP (DT the) (JJ second) (NN phase))
 (PP (IN of)
 (NP
 (NP (DT an) (JJ independent)
 (ADJP
 (QP ($ $) (CD 400) (CD million))
 (-NONE- *U*))
 (NN power) (NN plant))
 (, ,)
 (SBAR
 (WHNP-2 (WDT which))
 (S
 (NP-SBJ-1 (-NONE- *T*-2))
 (VP (VBZ is)
 (VP (VBG being)
 (VP (VBN built)
 (NP (-NONE- *-1))
 (PP-LOC (IN in)
 (NP
 (NP (NNP Burrillville))
 (, ,)
 (NP (NNP R.I)))))))))))))))))

Penn
Treebank

Thursday, March 9, 17

(P)CFG model, (P)CKY algorithm

• CKY: given CFG and sentence w

• Does there exist at least one parse?

• Enumerate parses (backpointers)

• Probabilistic/Weighted CKY: given PCFG and sentence w

• Likelihood of sentence P(w)

• Most probable parse (“Viterbi parse”)
argmaxy P(y | w) = argmaxy P(y, w)

• Non-terminal span marginals

• Discriminative Tree-CRF parsing:
argmaxy P(y | w)

14

Thursday, March 9, 17

• Parsing model accuracy: lots of ambiguity!!

• PCFGs lack lexical information to resolve ambiguities
(sneak in world knowledge?)

• Modern constituent parsers: enrich PCFG with lexical information
and fine-grained nonterminals

• Modern dependency parsers: effectively the same trick

• Parsers’ computational efficiency

• Grammar constant; pruning & heuristic search

• O(N3) for CKY (ok? sometimes...)

• O(N) left-to-right incremental algorithms

• Evaluate: precision and recall of labeled spans

• Treebank data

15

Thursday, March 9, 17

Better PCFG grammars

• Nonterminal splitting: because substitutability is
too strong (e.g. “she” as subject vs object)

16

204 CHAPTER 11. CFG PARSING

S

VP

NP

NN

bear

DT

the

VBD

heard

NP

PRP

She

S

VP

NP

PRP

she

VBD

heard

NP

NN

bear

DT

The

Figure 11.5: A grammar that allows she to take the object position wastes probability mass
on ungrammatical sentences.

S

VP

NP

PP

NP

NP

NNP

Italy

CC

and

NP

NNP

France

P

from

NN

wine

V

likes

NP

PRP

she

S

VP

NP

NP

NNP

Italy

CC

and

NP

PP

NP

NNP

France

P

from

NN

wine

V

likes

NP

PRP

she

Figure 11.6: The left parse is preferable because of the conjunction of phrases headed by
France and Italy.

attachment. More fine-grained NP and VP categories might allow us to make attachment
decisions more accurately.

Semantic preferences In addition to grammatical constraints such as case marking, we
have semantic preferences: for example, that conjoined entities should be similar. In Fig-
ure 11.6, you probably prefer the left parse, which conjoins France and Italy, rather than the
right parse, which conjoins wine and Italy. But it is impossible for a PCFG to distinguish
these parses! They contain exactly the same productions, so the resulting probabilities
will be the same, no matter how you define the probabilities of each production.

Subsumption There are several choices for annotating PP attachment

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars

• Parent annotation

17

11.5. IMPROVING PCFG PARSING 207

S

VP

NP

NN

bear

DT

the

V

heard

NP

she

! S

VP-S

NP-VP

NN-NP

bear

DT-NP

the

VP-VP

heard

NP-S

she

Figure 11.8: Parent annotation in a CFG derivation

Parent annotation weakens the PCFG independence assumptions. This could help
accuracy by making more fine-grained distinctions, which better capture real lingusitic
phenomena. But it could also hurt accuracy, because each production probability must be
estimated from less data.

In practice, the transformations proposed by Johnson (1998) do improve performance
on PTB parsing:

• Standard PCFG: 72% F-measure, 14,962 rules

• Parent-annotated PCFG with flattening: 80% F-measure, 22,773 rules [todo: double
check that flattening is included too]

• In principle, parent annotation could have increased the grammar size much more
dramatically, but many possible productions never occur, or are subsumed.

Lexicalization

Recall that some of the problems with PCFG parsing that were suggested above have to
do with meaning — for example, preferring to coordinate constituents that are of the same
type, like cats and dogs rather than cats and houses. A simple way to capture semantics is
through the words themselves: we can annotate each non-terminal with head word of the
phrase.

Head words are deterministically assigned according to a set of rules, sometimes
called head percolation rules. In many cases, these rules are straightforward: the head of
a NP ! DT N production is the noun, the head of a S ! NP VP production is the head
of the VP, etc. But as always, there are a lot of special cases.

A fragment of the head percolation rules used in many parsing systems are found in
Table 11.3.4

The meaning of these rules is that to find the head of an S constituent, we first look for
the rightmost VP child; if we don’t find one, we look for the rightmost SBAR child, and
so on down the list. Verb phrases are headed by left verbs (the head of can walk home is

4From http://www.cs.columbia.edu/˜mcollins/papers/heads

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

• Linguistically designed state splits

• (Or: automatically learned ones with split-merge EM)

18

11.6. MODERN CONSTITUENT PARSING 217

Figure 11.12: Performance for various Markovization levels (Klein and Manning, 2003).

Figure 11.13 shows an example of an error that is corrected through the introduction
of a new NP-TMP subcategory for temporal noun phrases.

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for temporal noun
phrases. This corrects the PCFG parsing error in (a), resulting in the correct parse in (b).

Automated state-splitting Klein and Manning (2003) use linguistic insight and error
analysis to manually split PTB non-terminals so as to make parsing easier. Later work
by Dan Klein and his students automated this state-splitting process, by treating the “re-
fined” non-terminals as latent variables. For example, we might split the noun phrase

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

• Lexicalization: encode semantic preferences

19

208 CHAPTER 11. CFG PARSING

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N* EX $ CD QP PRP . . .
PP left IN TO FW

Table 11.3: A fragment of head percolation rules

NP(wine)

NP(Italy)

NNS

Italy

CC

and

NP(wine)

PP(from)

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

NP(wine)

PP(from)

NP(France)

NP(Italy)

NNS

Italy

CC

and

NP(France)

NNP

France

IN

from

NP(wine)

NN

wine

VP(meet)

PP(on)

NP

NN

Monday

P

on

NP(President)

NN

President

DT

the

VB

meet

VP(meet)

NP(President)

PP(of)

NP

NN

Mexico

P

of

NP(President)

NN

President

DT

the

VB

meet

Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper) and PP
attachment (lower)

walk, since can is tagged MD), noun phrases are headed by the rightmost noun-like non-
terminal (so the head of the red cat is cat), and prepositional phrases are headed by the
preposition (the head of at Georgia Tech is at). Some of these rules are somewhat arbitrary
— there’s no particular reason why the head of cats and dogs should be dogs — but the
point here is just to get some lexical information that can support parsing, not to make
any deep claims about syntax.

Given these rules, we can lexicalize the parse trees for some of our examples, as shown
in Figure 11.9.

• In the upper part of Figure 11.9, we see how lexicalization can help solve coordina-
tion scope ambiguity; if,

P (NP ! NP(France) CC NP(Italy)) > P (NP ! NP(wine) CC NP(Italy)), (11.15)

we should get the right parse.

(c) Jacob Eisenstein 2014-2017. Work in progress.

Better PCFG grammars

[From Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

Better PCFG grammars/more

20

220 CHAPTER 11. CFG PARSING

Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%

Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%

State splitting (Petrov and Klein, 2007) 90.1%

CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%

Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

alternative not described in detail here is the self-training parser of McClosky et al. (2006),
which automatically labels additional training instances, and then uses them for learning.
Self-training is often considered to be a risky technique in machine learning, since the
automatically-labeled instances can cause the classifier to “drift” away from the correct
model (Blum and Mitchell, 1998).

Recent work has applied neural representations to parsing, representing units of text
with dense numerical vectors (Socher et al., 2013a; Durrett and Klein, 2015). Neural ap-
proahes to natural language processing will be surveyed in chapter 21. For now, we note
that while performance for these models is at or near the state-of-the-art, neural net ar-
chitectures have not demonstrated the same dramatic improvements in natural language
parsing as in other problem domains, such as computer vision (e.g., Krizhevsky et al.,
2012).

(c) Jacob Eisenstein 2014-2017. Work in progress.

[From Eisenstein (2017)]
Thursday, March 9, 17

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes-snapshot.pdf

• stopped here 3/7

21

Thursday, March 9, 17

Treebanks

• Penn Treebank (constituents, English)

• http://www.cis.upenn.edu/~treebank/home.html

• Recent revisions in Ononotes

• Universal Dependencies

• http://universaldependencies.org/

• Prague Treebank (syn+sem)

• many others...

• Know what you’re getting!

22

Thursday, March 9, 17

http://www.cis.upenn.edu/~treebank/home.html
http://www.cis.upenn.edu/~treebank/home.html
http://universaldependencies.org/
http://universaldependencies.org/

Left-to-right parsing
• Shift-reduce parsing -- linear time (in sentence length)!

• Most practically efficient for constituent parsing -- e.g. zpar and corenlp
implementations

23

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n + 1

S x | B n SHIFT S | x B n
S | (X | ⌧1 | . . . | ⌧` B n REDUCE S | (X ⌧1 . . . ⌧`) B n � 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents
the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x
is a terminal symbol, X is a nonterminal symbol, and each ⌧ is a completed subtree. The top of the stack is to the right, and the
buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .
Stack Buffer Action

0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT
3 (S | (NP | The hungry | cat |meows | . SHIFT
4 (S | (NP | The | hungry cat |meows | . SHIFT
5 (S | (NP | The | hungry | cat meows | . REDUCE
6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT
8 (S | (NP The hungry cat) | (VP meows . REDUCE
9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE
11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n + 1

S T n GEN(x) S | x T | x n
S | (X | ⌧1 | . . . | ⌧` T n REDUCE S | (X ⌧1 . . . ⌧`) T n � 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP | The The GEN(hungry)
4 (S | (NP | The | hungry The | hungry GEN(cat)
5 (S | (NP | The | hungry | cat The | hungry | cat REDUCE
6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE
9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)

10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE
11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .

Figure 4: Joint generation of a parse tree and sentence.

https://arxiv.org/pdf/1602.07776.pdf

Thursday, March 9, 17

https://arxiv.org/pdf/1602.07776.pdf
https://arxiv.org/pdf/1602.07776.pdf

24

https://theoutline.com/post/1192/google-s-featured-snippets-are-worse-than-fake-news

Question answering in the news

https://twitter.com/ruskin147/status/838445095410106368/video/1
Thursday, March 9, 17

https://theoutline.com/post/1192/google-s-featured-snippets-are-worse-than-fake-news
https://theoutline.com/post/1192/google-s-featured-snippets-are-worse-than-fake-news
https://twitter.com/ruskin147/status/838445095410106368/video/1
https://twitter.com/ruskin147/status/838445095410106368/video/1

