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® Syntax: how do words structurally combine to form
sentences and meaning?

® Representations

e Constituents

® [the big dogs] chase cats

® [colorless green clouds] chase cats
® Dependencies

¢ The dog chased the cat.
e My dog,a big old one, chased the cat.

® Idea of a grammar (G): global template for how sentences /
utterances / phrases w are formed, via latent syntactic
structure y

® Linguistics: what do G and P(w,y | G) look like?
® Generation: score with, or sample from, P(w,y | G)

® Parsing: predict P(y | w, G)
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® Competence vs. Performance!?
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Hierarchical view of syntax

® “a Sentence made of Noun Phrase followed by a
Verb Phrase”

NP VP
 John |  arrived |

the man ate an apple
 the elderly janitor ' looked at his watch

b. S — NPVP (1)

[From Phillips (2003)]
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Is language context-free?

® Practical examples where nesting seems like a
useful explanation
® The processor has |0 million times fewer transistors

on it than todays typical micro- processors, runs much
more slowly, and operates at five times the voltage...

S — NN VP
VP — VP3S [VPN3S | ...
VP3S — VP3S,VP3S, and VP3S |VBZ |VBZ NP | ...
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° Regular language = <=> RegEx <=> paths in finite state machine
® Context-free language <=> CFG <=> derivations in pushdown automaton

® A context-free grammar is a 4-tuple:

N a set of non-terminals
Y. aset of terminals (distinct from V)
R aset of productions, each of the form A — 3,

where A€ Nand g € (X UN)*
S adesignated start symbol

Derivation: sequence of rewrite steps from S to a string (sequence of
terminals, i.e. words)

Yield: the final string

A CFG is a “boolean language model”
A probabilistic CFG is a probabilistic language model:
® Every production rule has a probability; defines prob dist. over strings.
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Example

S
/\

NP VP
| Y T
PRP VBZ NP
| | | T T~
She eats NN IN NP
| | |

sushi with NNS
|

chopsticks

(S(NP(PRP She) (VP (VBZ eats)
(NP (NN Sushi))
(pp (nwith) (np (Nns chopsticks))))))
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PRP VBZ NP | | T
| | | T She eats NP

She eats NN IN NP | T
| | | NN IN NP

sushi with NNS - .| |
| sushi with NNS

chopsticks -
chopsticks
(S (NP (PRP She) (VP (VBZ eats)
(NP (NN Sushi))
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Constituents

e Constituent tree/parse is one representation of sentence’s syntax.
What should be considered a constituent, or constituents of the
same category!

® Substitution tests
® Pronoun substitution
® (Coordination tests

® Simple grammar of English
Must balance overgeneration versus undergeneration
Noun phrases
NP modification: adjectives, PPs
Verb phrases
Coordination...




Parsing with a CFG

® Task:given text and a CFG, answer:
® Does there exist at least one parse!?
® Enumerate parses (backpointers)

® Cocke-Kasami-Younger algorithm
® Bottom-up dynamic programming:
Find possible nonterminals for short spans of

sentence, then possible combinations for higher
spans

Requires converting CFG to Chomsky Normal Form
(a.k.a. binarization)
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Grammar

Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

o yummy = foods - store

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [kij],
If exists rule A -> B C,

add A to cell [i,j] (Recognizer)
.. OF ...

add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of
possible nonterminals

Parser: per span, record
possible ways the
nonterminal was
constructed.
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