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MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))
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Too many features

Millions to billions of features: performance often keeps
improving!

Engineering issue: feature name=>number mapping
Feature selection ... mixed results

® Count cutoffs: great computational benefits;
typically not for performance

® Features seen only once at training time typically help (!),
or even features not seen at training time

® Predictive value: mutual info./ info. gain / chi-square

® LI regularization: encourages O sparsity, but not always
better than L2

® [structured sparsity more interesting: Yogatama, Martins tutorial]

® Personal opinion: feature-based models just want a high
diversity of weak signals
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Feature hashing

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!) (Weinberger et al. 2009)

® Accuracy loss low since collisions are rare (since features
are sparse). Works well, great for large-scale data (memory
usage constant!)

® Practically: use a fast string hashing function
(e.g. murmurhash or Python’s internal one)

® This is a type of randomized projection Ax. Typically not
better than the original representation.

® |Instead of randomized embeddings, better generalization
from learning them
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Dense representations

® Feature hashing as
dense representation

P(wneazt ‘ wp?“ev) X eXP(A

Wprewv

® Saul and Pereira 1997 as
dense representation

P(wnext | wprev) = A

Wprev Wnext

® Mnih and Hinton 2007:

log-bilinear model
[similar:“word2vec” Mikolov et al.]

P(wnext ‘ wp'r‘ev) X eXp(A

Wprev

Learn with gradient descent

(this is simplified from their version)
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Neural networks

® |dea: learn distributed representations of concepts
® Nonlinear functions seem to help

® Multilayer perceptron: http://playground.tensorflow.org/
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FIGURE 1. The basic components of a parallel distributed processing system.
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[Diagrams from: Rumelhart and McClelland (ed.) 1986, Parallel Distributed Processing]
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Bengio et al. 2003: N-gram multilayer perceptron
f(wt7 T 7wt—n—|—1) — p(wt‘wtl—l)

Learn: C,W, U, H,d (chain rule)

i-th output = P(w, = i| context)
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Output layer (softmax / log-linear)
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® stopped here 2/14
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Word/feature embeddings

® “Lookup layer”: from discrete input features
(words, ngrams, etc.) to continuous vectors

® Anything that was directly used in log-linear models,
move to using vectors

® As model parameters: learn them like everything
else

® As external information: use pretrained embeddings

e Common in practice: use a faster-to-train model on
very large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

® Shared representations for
domain adaptation and multitask learning
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