From features to neural networks

Lecture, Feb 14
CS 690N, Spring 2017

Advanced Natural Language Processing
http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor

College of Information and Computer Sciences
University of Massachusetts Amherst

Tuesday, February 14, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))

Tuesday, February 14, 17

Too many features

Millions to billions of features: performance often keeps
improving!

Engineering issue: feature name=>number mapping
Feature selection ... mixed results

® Count cutoffs: great computational benefits;
typically not for performance

® Features seen only once at training time typically help (!),
or even features not seen at training time

® Predictive value: mutual info./ info. gain / chi-square

® LI regularization: encourages O sparsity, but not always
better than L2

® [structured sparsity more interesting: Yogatama, Martins tutorial]

® Personal opinion: feature-based models just want a high
diversity of weak signals

Tuesday, February 14, 17

Feature hashing

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!) (Weinberger et al. 2009)

® Accuracy loss low since collisions are rare (since features
are sparse). Works well, great for large-scale data (memory
usage constant!)

® Practically: use a fast string hashing function
(e.g. murmurhash or Python’s internal one)

® This is a type of randomized projection Ax. Typically not
better than the original representation.

® |Instead of randomized embeddings, better generalization
from learning them

Tuesday, February 14, 17

Dense representations

® Feature hashing as
dense representation

P(wneazt ‘ wp?“ev) X eXP(A

Wprewv

® Saul and Pereira 1997 as
dense representation

P(wnext | wprev) = A

Wprev Wnext

® Mnih and Hinton 2007:

log-bilinear model
[similar:“word2vec” Mikolov et al.]

P(wnext ‘ wp'r‘ev) X eXp(A

Wprev

Learn with gradient descent

(this is simplified from their version)

X

X

Wnext)

A (fixed)

>

wne:ct)

A (learned)

>

B (learned)

Z

B (learned)

pt=NOUN

pw=the
w=dog\& \
x = (0,,

>y

> Y

pt=DET w=dog&pw=the

\ w=dog&pt=DET

w=chair&pt=DET

/

01o0..01,0...01,0,...,0,1,0,0,1,0,....,0,0,0, ..., (

X = [(0.26, 0.25, -0.39, -0.07, 0.13, -0.17) [(-0.43, -0.37, -0.12, 0.13, -0.11, 0.34) (-0.04, 0.50, 0.0¢

chair
on
dog

the

mouth

gone

(-0.37,-0.23, 0.33, 0.38, -0.02, -0.37)
(-0.21, -0.11, -0.10, 0.07, 0.37, 0.15)
(0.26, 0.25, -0.39, -0.07, 0.13, -0.17)

(-0.43,-0.37,-0.12, 0.13, -0.11, 0.34)

(-0.32, 0.43, -0.14, 0.50, -0.13, -0.42)

(0.06, -0.21, -0.38, -0.28, -0.16, -0.44)

>

Word Embeddings

™

NOUN
VERB

DET
AD)
PREP

ADV

(0.16, 0.03,-0.17, -0.13)

(0.41, 0.08, 0.44, 0.02)

(-0.04, 0.50, 0.04, 0.44)
(-0.01, -0.35, -0.27, 0.20)
(-0.26, 0.28, -0.34, -0.02)

(0.02,-0.17, 0.46, -0.08)

POS Embeddings

Tuesday, February 14, 17

Neural networks

® |dea: learn distributed representations of concepts
® Nonlinear functions seem to help

® Multilayer perceptron: http://playground.tensorflow.org/

U-m [] +m

Threshold Output

Function Sigmoid Activation

Function

FIGURE 1. The basic components of a parallel distributed processing system.

GD @ DD @D D@ @D @D DD

[Diagrams from: Rumelhart and McClelland (ed.) 1986, Parallel Distributed Processing]
6

Tuesday, February 14, 17

http://playground.tensorflow.org/
http://playground.tensorflow.org/

Bengio et al. 2003: N-gram multilayer perceptron
f(wt7 T 7wt—n—|—1) — p(wt‘wtl—l)

Learn: C,W, U, H,d (chain rule)

i-th output = P(w, = i| context)

J C(.) E Rm WOI"CI embedding
softmax ! parameters
(X0 —___ees)
N\
most| computation here \\ A = (C(Wt_1)7c(wt—2)7 T 7C(Wf—7l‘|—1))
\ . .
\ Lookup layer with concatenation:
\ (kinda) hidden layer size (n-1)m
tanh 1
®0) "
) another hidden layer,
! size h
. |
C(W;_z) C(Wt_l) . -’ 7
—) e o) y =b+ Wx—+ U tanh(d + Hx)
S A L Marix € -7 Vocab output: log-probs size V
i C P shared parameters
n across words
[] []
index for w;_, 11 index for w;_» index for w,_; ey Wt

p(wt‘wt—la'”wt—n—l—l) —

zi eYi .

Output layer (softmax / log-linear)

Tuesday, February 14, 17

® stopped here 2/14

Tuesday, February 14, 17

Word/feature embeddings

® “Lookup layer”: from discrete input features
(words, ngrams, etc.) to continuous vectors

® Anything that was directly used in log-linear models,
move to using vectors

® As model parameters: learn them like everything
else

® As external information: use pretrained embeddings

e Common in practice: use a faster-to-train model on
very large, perhaps different, dataset
[e.g. word2vec, glove pretrained word vectors]

® Shared representations for
domain adaptation and multitask learning

Tuesday, February 14, 17

