
Log-linear models (part III)

Lecture, Feb 7
CS 690N, Spring 2017

Advanced Natural Language Processing
http://people.cs.umass.edu/~brenocon/anlp2017/

Brendan O’Connor
College of Information and Computer Sciences

University of Massachusetts Amherst

Tuesday, February 7, 17

http://people.cs.umass.edu/~brenocon/anlp2017/
http://people.cs.umass.edu/~brenocon/anlp2017/

MaxEnt / Log-Linear models
• x: input (all previous words)

• y: output (next word)

• f(x,y) => Rd feature function [[domain knowledge here!]]

• v: Rd parameter vector (weights)For any x 2 X , y 2 Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

Here exp(x) = ex, and v ·f(x, y) =
P

d

k=1 vkfk(x, y) is the inner product between
v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) 2 Rd is a feature
vector representing that pair. Each component f

k

(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, v

k

, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) 2 X , and each y(i) 2 Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi�1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram hw

i�1 yi is equal to hstatistical modeli, and 0 otherwise. The third
feature returns 1 if the trigram hw

i�2 w
i�1 yi is equal to hany statistical modeli,

6

P (w1..wT) =

Y

t

P (wt | w1..wt�1)

=

Y

t

exp(v · f(w1..wt�1, wt))P
w2V exp(v · f(w1..wt�1, w))

Application to history-based LM:

Tuesday, February 7, 17

Learning

3

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by
X

y

02Y
exp

�
v · f(x, y0)

�

giving

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0)) (3)

then it is easy to verify that we have a well-formed distribution: that is,
X

y2Y
p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�

13

@

@vj
log p(y|x; v) =

• Gradient at a single example: can it be zero?

• Full dataset gradient: First moments match
at the mode

• Log-likelihood is concave

• At least with regularization, since typically
linearly separable

• Is my function convex?
Check Boyd and Vandenberghe ch. 3

Tuesday, February 7, 17

Learning

3

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by
X

y

02Y
exp

�
v · f(x, y0)

�

giving

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0)) (3)

then it is easy to verify that we have a well-formed distribution: that is,
X

y2Y
p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�

13

fun with the chain rule
@

@vj
log p(y|x; v) =

• Gradient at a single example: can it be zero?

• Full dataset gradient: First moments match
at the mode

• Log-likelihood is concave

• At least with regularization, since typically
linearly separable

• Is my function convex?
Check Boyd and Vandenberghe ch. 3

Tuesday, February 7, 17

Learning

3

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by
X

y

02Y
exp

�
v · f(x, y0)

�

giving

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0)) (3)

then it is easy to verify that we have a well-formed distribution: that is,
X

y2Y
p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�

13

fun with the chain rule

fj(x, y) �
X

y0

p(y0|x; v)fj(x, y0)
@

@vj
log p(y|x; v) =

• Gradient at a single example: can it be zero?

• Full dataset gradient: First moments match
at the mode

• Log-likelihood is concave

• At least with regularization, since typically
linearly separable

• Is my function convex?
Check Boyd and Vandenberghe ch. 3

Tuesday, February 7, 17

Learning

3

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by
X

y

02Y
exp

�
v · f(x, y0)

�

giving

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0)) (3)

then it is easy to verify that we have a well-formed distribution: that is,
X

y2Y
p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�

13

fun with the chain rule

fj(x, y) �
X

y0

p(y0|x; v)fj(x, y0)
@

@vj
log p(y|x; v) =

Feature in data? Feature in posterior?

• Gradient at a single example: can it be zero?

• Full dataset gradient: First moments match
at the mode

• Log-likelihood is concave

• At least with regularization, since typically
linearly separable

• Is my function convex?
Check Boyd and Vandenberghe ch. 3

Tuesday, February 7, 17

Gradient descent

• Batch gradient descent (doesn’t work well by
itself)

• Most commonly used alternatives

• LBFGS (adaptive version of batch GD)

• Call a library implementation with gradient callback

• SGD, one example at a time

• and adaptive variants: Adagrad, Adam, etc.

• Intuition

• Issue: Combining per-example sparse updates
with regularization updates

• Lazy updates

• Occasional regularizer steps (easy to implement)

4

Tuesday, February 7, 17

• stopped here on 2/7

5

Tuesday, February 7, 17

Engineering

• Sparse dot products are crucial!

• Lots and lots of features?

• Millions to billions of features: performance often keeps
improving!

• Features seen only once at training time typically help

• Feature name=>number mapping is the problem;
the parameter vector is fine

• Feature hashing: make e.g. N(u,v,w) mapping
random with collisions (!)

• Accuracy loss low since features are rare. Works well,
great for large-scale data (memory usage constant!)

• Practically: use a fast string hashing function
(e.g. murmurhash or Python’s internal one)

6

Tuesday, February 7, 17

Feature selection

• Offline feature selection

• Count cutoffs: computational, not performance
benefits

• Predictive value: mutual info. / info. gain / chi-square

• L1 regularization: encourages θ sparsity

7

min

✓
� log p✓(y|x) + �

X

j

|✓j |

• L1 optimization: convex but nonsmooth; requires
subgradient methods

Tuesday, February 7, 17

Dense representations

• Saul and Pereira 1997?

• Mnih and Hinton 2007: log-bilinear model

8

Goldberg

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

350

Tuesday, February 7, 17

9

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

• Bengio et al. 2003: N-gram MLP

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

A NEURAL PROBABILISTIC LANGUAGE MODEL

and McCallum, 1998): each word is associated deterministically or probabilistically with a discrete
class, and words in the same class are similar in some respect. In the model proposed here, instead
of characterizing the similarity with a discrete random or deterministic variable (which corresponds
to a soft or hard partition of the set of words), we use a continuous real-vector for each word, i.e.
a learned distributed feature vector, to represent similarity between words. The experimental
comparisons in this paper include results obtained with class-based n-grams (Brown et al., 1992,
Ney and Kneser, 1993, Niesler et al., 1998).

The idea of using a vector-space representation for words has been well exploited in the area of
information retrieval (for example see work by Schutze, 1993), where feature vectors for words are
learned on the basis of their probability of co-occurring in the same documents (Latent Semantic
Indexing, see Deerwester et al., 1990). An important difference is that here we look for a repre-
sentation for words that is helpful in representing compactly the probability distribution of word
sequences from natural language text. Experiments suggest that learning jointly the representation
(word features) and the model is very useful. We tried (unsuccessfully) using as fixed word features
for each word w the first principal components of the co-occurrence frequencies of w with the words
occurring in text around the occurrence of w. This is similar to what has been done with documents
for information retrieval with LSI. The idea of using a continuous representation for words has how-
ever been exploited successfully by Bellegarda (1997) in the context of an n-gram based statistical
language model, using LSI to dynamically identify the topic of discourse.

The idea of a vector-space representation for symbols in the context of neural networks has also
previously been framed in terms of a parameter sharing layer, (e.g. Riis and Krogh, 1996) for
secondary structure prediction, and for text-to-speech mapping (Jensen and Riis, 2000).

2. A Neural Model

The training set is a sequence w1 · · ·wT of words wt 2 V , where the vocabulary V is a large but
finite set. The objective is to learn a good model f (wt , · · · ,wt�n+1) = P̂(wt |wt�11), in the sense that
it gives high out-of-sample likelihood. Below, we report the geometric average of 1/P̂(wt |wt�11),
also known as perplexity, which is also the exponential of the average negative log-likelihood. The
only constraint on the model is that for any choice of wt�11 , ∑|V |

i=1 f (i,wt�1, · · · ,wt�n+1) = 1, with
f > 0. By the product of these conditional probabilities, one obtains a model of the joint probability
of sequences of words.

We decompose the function f (wt , · · · ,wt�n+1) = P̂(wt |wt�11) in two parts:

1. A mappingC from any element i of V to a real vector C(i) 2Rm. It represents the distributed
feature vectors associated with each word in the vocabulary. In practice, C is represented by
a |V |⇥m matrix of free parameters.

2. The probability function over words, expressed with C: a function g maps an input sequence
of feature vectors for words in context, (C(wt�n+1), · · · ,C(wt�1)), to a conditional probability
distribution over words in V for the next word wt . The output of g is a vector whose i-th
element estimates the probability P̂(wt = i|wt�11) as in Figure 1.

f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1))

The function f is a composition of these two mappings (C and g), with C being shared across
all the words in the context. With each of these two parts are associated some parameters. The

1141

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

A NEURAL PROBABILISTIC LANGUAGE MODEL

The yi are the unnormalized log-probabilities for each output word i, computed as follows, with
parameters b,W ,U ,d and H:

y= b+Wx+U tanh(d+Hx) (1)

where the hyperbolic tangent tanh is applied element by element, W is optionally zero (no direct
connections), and x is the word features layer activation vector, which is the concatenation of the
input word features from the matrix C:

x= (C(wt�1),C(wt�2), · · · ,C(wt�n+1)).

Let h be the number of hidden units, andm the number of features associated with each word. When
no direct connections from word features to outputs are desired, the matrixW is set to 0. The free
parameters of the model are the output biases b (with |V | elements), the hidden layer biases d (with
h elements), the hidden-to-output weightsU (a |V |⇥h matrix), the word features to output weights
W (a |V |⇥ (n� 1)m matrix), the hidden layer weights H (a h⇥ (n� 1)m matrix), and the word
features C (a |V |⇥m matrix):

θ= (b,d,W,U,H,C).

The number of free parameters is |V |(1+ nm+ h) + h(1+ (n� 1)m). The dominating factor is
|V |(nm+ h). Note that in theory, if there is a weight decay on the weightsW and H but not on C,
thenW and H could converge towards zero while C would blow up. In practice we did not observe
such behavior when training with stochastic gradient ascent.

Stochastic gradient ascent on the neural network consists in performing the following iterative
update after presenting the t-th word of the training corpus:

θ θ+ ε
∂ log P̂(wt |wt�1, · · ·wt�n+1)

∂θ

where ε is the “learning rate”. Note that a large fraction of the parameters needs not be updated
or visited after each example: the word features C(j) of all words j that do not occur in the input
window.
Mixture of models. In our experiments (see Section 4) we have found improved performance by

combining the probability predictions of the neural network with those of an interpolated trigram
model, either with a simple fixed weight of 0.5, a learned weight (maximum likelihood on the
validation set) or a set of weights that are conditional on the frequency of the context (using the
same procedure that combines trigram, bigram, and unigram in the interpolated trigram, which is a
mixture).

3. Parallel Implementation

Although the number of parameters scales nicely, i.e. linearly with the size of the input window and
linearly with the size of the vocabulary, the amount of computation required for obtaining the output
probabilities is much greater than that required from n-gram models. The main reason is that with
n-gram models, obtaining a particular P(wt |wt�1, . . . ,wt�n+1) does not require the computation of
the probabilities for all the words in the vocabulary, because of the easy normalization (performed
when training the model) enjoyed by the linear combinations of relative frequencies. The main
computational bottleneck with the neural implementation is the computation of the activations of
the output layer.

1143

Word embedding
parameters

Tuesday, February 7, 17

