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MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))
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Learning

logp(y|z;v) = v f(z,y) —log »  exp(v- f(z,y))

y'ey
o
— logp(y|z;v) =
6’vj
® Gradient at a single example: can it be zero!? B G

Lieven Vandenberghe

® Full dataset gradient: First moments match

at the mode COnveX

® |og-likelihood is concave Optimization

® At least with regularization, since typically
linearly separable

® s my function convex?
Check Boyd and Vandenberghe ch. 3
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Learning

log p(ylz;v) = —log Y exp(v- f(z,y))
y' €y

. fun with the chain rule

a \4
a0, log p(y|z;v) =

® Gradient at a single example: can it be zero!? S L

Lieven Vandenberghe

® Full dataset gradient: First moments match

at the mode Convex

® |og-likelihood is concave Optimization

® At least with regularization, since typically
linearly separable

® s my function convex?
Check Boyd and Vandenberghe ch. 3
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Learning

log p(ylz;v) = —log Y exp(v- f(z,y))
y' ey
« fun with the chain rule
0

—~ ] — : _ 2. . /

5o log p(y|x; v) £z, y) Z p( |z v) £ (z, )
Yy

® Gradient at a single example: can it be zero!? Stephen Boyd and

Lieven Vandenberghe

® Full dataset gradient: First moments match

at the mode COnveX

® |og-likelihood is concave Optimization

® At least with regularization, since typically
linearly separable

® s my function convex?
Check Boyd and Vandenberghe ch. 3
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Learning

log p(ylz;v) = —log Y exp(v- f(z,y))
y'ey
« fun with the chain rule
0
23;{{;‘ 1()§§.Z)(:Z/|:17; ?]:) — &f}'(ZC, Z/> o :EE;:.Z)(Z/,|:ZT;?})ef}'(zvv Z//)
Feature in data? Feature in posterior?
® Gradient at a single example: can it be zero!? Szl

Lieven Vandenberghe

® Full dataset gradient: First moments match

at the mode COnveX

® |og-likelihood is concave Optimization

® At least with regularization, since typically
linearly separable

® s my function convex?
Check Boyd and Vandenberghe ch. 3
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Gradient descent

® Batch gradient descent (doesn’t work well by
itself)

® Most commonly used alternatives
o |[BFGS (adaptive version of batch GD)

® (all a library implementation with gradient callback
® S5SGD, one example at a time

® and adaptive variants: Adagrad,Adam, etc.

® [ntuition

® [ssue: Combining per-example sparse updates
with regularization updates

® Lazy updates

® Occasional regularizer steps (easy to implement)
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® stopped here on 2/7
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Engineering

® Sparse dot products are crucial!
® [ots and lots of features!?

® Millions to billions of features: performance often keeps
improving!
® Features seen only once at training time typically help

® Feature name=>number mapping is the problem;
the parameter vector is fine

® Feature hashing: make e.g. N(u,v,w) mapping
random with collisions (!)

® Accuracy loss low since features are rare. Works well,
great for large-scale data (memory usage constant!)

® Practically: use a fast string hashing function
(e.g. murmurhash or Python’s internal one)

6
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Feature selection

® Offline feature selection

® Count cutoffs: computational, not performance
benefits

® Predictive value: mutual info./ info. gain / chi-square

® LI regularization: encourages O sparsity

min —10gpe(y|$)+AZ\9j| @ @@
F— T

A g

g

L1 L2
® | | optimization: convex but nhonsmooth; requires

subgradient methods
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Dense representations

pw=the NOUN pt=DET w=dog&pw=the
w=dog b= \ \ W=d°9§jDET / w=chair&pt=DET
x=(,..,010,..,0,1,0..... 010...,0,1,0,0,1,0,....,0,0,0, ...., C

(b)

X = 60.26, 0.25, -0.39, -0.07, 0.13, —0.17ﬁ@0.43, -0.37,-0.12, 0.13, -0.11, 0.3@[(—0.04, 0.50, 0.04

~

NOUN (0.16, 0.03,-0.17, -0.13)

ir (-0.37,-0.23,0.33, 0.38,-0.02, -0.37
chair ) VERB | (0.41,0.08, 0.44, 0.02)

on | (-0.21,-0.11, -0.10, 0.07, 0.37, 0.15)
dog | (0.26, 0.25, -0.39, -0.07, 0.13, -0.17)
DET = (-0.04,0.50, 0.04, 0.44)

ADJ = (-0.01,-0.35,-0.27, 0.20)
the | (-0.43,-0.37,-0.12,0.13, -0.11, 0.34) oREP | (-0.26, 0.28, -0.34, -0.02)

mouth | (. i i i
(-0.32, 0.43, 014 0.50, -0.13, -0.42) ADY | (0.02,-0.17, 0.46, -0.08)

gone | (0.06, -0.21, -0.38, -0.28, -0.16, -0.44) L

POS Embeddings

Word Embeddings

®  Saul and Pereira 19977
®  Mnih and Hinton 2007: log-bilinear model
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® Bengio et al. 2003: N-gram MLP
f(wt7° " 7Wt—n—|—1) — p(wt‘wtl_l)

i-th output = P(w; = i | context)

softmax
[ X .- 00 )
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Table . . Matrix C .
100k_u --------------------------------------------
inC p shared parameters
across words
index for w;_, index for w;_» index for w;_;

C(i) 6 Rm X = (C(Wt—l)ac(wt—Z)v T 7C(Wt—n+1))
Word embedding y=b+Wx+ Utanh(d _I_Hx)

parameters D o _ e
P(Welwi—1,+ Winy1) =

. Ei eVi
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