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MaxEnt / Log-Linear models

X: input (all previous words)
y: output (next word)
f(x,y) => Rd feature function [[domain knowledge here!]]

v: Rd parameter vector (weights)

CXp (’U ' f(f, y))
2y cy XD (v- fz,y'))

p(y|z;v) =

Application to history-based LM:

P(wy..wy) = HP(wt | wy.we_)

exp(v (w1 W1, Wt))
_ H S

WV exp(v - flwi..we_1,w))
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if y =model
otherwise

if y=model and w;_1 = statistical
otherwise

if y =model, w;_o =any,w,;_1 =statistical
otherwise

if y =model, w;_o =any
otherwise

if y =model, w;_1 is an adjective
otherwise

if y =model, w;_1 ends in “ical”

otherwise

if y =model, “model” 1s not in w1, ... w;_1
otherwise

if y =model, “grammatical” is in wy, ... w;_1
otherwise

Figure 1: Example features for the language modeling problem, where the input x
1s a sequence of words wyws ... w;_1, and the label y 1s a word.

® These are sparse. But still very useful.

3
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Feature templates

® Generate large collection of features from single template

® Not part of (standard) log-linear mathematics, but how you
actually build these things
® e.g. Trigram feature template:
For every (u,v,w) trigram in training data, create feature

1 ify=w, wi_9=u wj_1 =0
fN(u,v,w) (337 y) { Z Z

0O otherwise

where N (u,v,w) is a function that maps each trigram in the training data to a
unique integer.

® At training time: record N(u,v,w) mapping

® At test time: extract trigram features and check if they are in the
feature vocabulary

® Feature engineering: iterative cycle of model development
4
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Feature subtleties

® On training data, generate all features under
consideration

® Subtle issue: partially unseen features
® At testing time,a completely new feature has to be
ignored (weight 0)
® Assuming a conditional log-linear model,

® Features typically conjoin between aspects of both
input and output

® Features can only look at the output f(y)
® |nvalid: Features that only look at the input
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Multiclass Log. Reg.

® What does this look like in log-linear form?

eXP(Zg‘ 0j,y;)
Dy €XP(Q2_; 05y xj)

Ply|z)=

® “Complete input-output conjunctions” generator: very common and
effective

® Log-linear models give more flexible forms
(e.g. disjunctions on output classes)

® Ambiguous term: ““feature”
® Partially “unseen” features: typically helpful
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Learning

® |og-likelihood is concave
® (At least with regularization: typically linearly separable)

logp(ylz;v) = v- fz,y) —log Y exp(v- f(z,y))
y' ey

; log p(ylz;v) =

J

E | P COMBINED(BANK|h) | = K{THEjBANK}

h ends in “THE”
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Learning

® |og-likelihood is concave
® (At least with regularization: typically linearly separable)

log p(y|z;v) = —log ) exp(v- f(z,y))
y'ey
. fun with the chain rule
a \4
—— logp(ylz;v) =
(%j 7

E | P COMBINED(BANK|h) | = K{THEjBANK}

h ends in “THE”
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Learning

® |og-likelihood is concave
® (At least with regularization: typically linearly separable)

logp(ylz;v) = v- f(x,y) — log Z exp (v f(z,y))
y'ey
. fun with the chain rule

a \4
ﬁlogp(y\x;v) = filzy) - Zp(y’lar;v)fj(x,y’)

J

E | P COMBINED(BANK|h) | = K{THEjBANK}

h ends in “THE”
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Learning

® |og-likelihood is concave
® (At least with regularization: typically linearly separable)

log p(y|z;v) = —log ) exp(v- f(z,y))
y' ey
« fun with the chain rule
o,
v, log p(ylz;v) = fi(z,y) — Zp(y’h?;v)fj(x,y’)

Feature in data? Feature in posterior?

E | P COMBINED(BANK|h) | = K{THEjBANK}

h ends in “THE”
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Learning

® |og-likelihood is concave
® (At least with regularization: typically linearly separable)

log p(y|z;v) = —log ) exp(v- f(z,y))
y' ey
. fun with the chain rule
o,
v, logp(ylz;v) = fi(z,y) — Zp(y’h?;v)fj(x,y’)

Feature in data? Feature in posterior?

® Gradient at a single example: can it be zero?
® Full dataset gradient: First moments match at mode

E | P COMBINED(BANK|h) | = K{THE}BANK}

h ends in “THE”
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Moment matching

® Example: Rosenfeld’s trigger words
® “.. loan ...wentinto the bank”

Empirical history prob.
(Bigram model estimate)

Pgicram (BANK|THE) = K{THEJBANK}

Log-linear model: E [ Pcovmmnen(BANK|A) 1 = Kirug pank}
has weaker property  hendsin “THE” ='

® Maximum Entropy view of a log-linear model:

® Start with feature expectations as constraints.
What is the highest entropy distribution that satisfies them?

Thursday, February 2, 17



® stopped here 2/2
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Gradient descent

® Batch gradient descent -- doesn’t work well by
itself

® Most commonly used alternatives

® |BFGS (adaptive version of batch GD)
® S5SGD, one example at a time

® and adaptive variants: Adagrad, Adam, etc.
® |ntuition

® |ssue: Combining per-example sparse updates
with regularization updates

® |azy updates
® Occasional regularizer steps (easy to implement)
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Engineering

® Sparse dot products are crucial!
® |ots and lots of features!?

® Millions to billions of features: performance often keeps
improving!

® Features seen only once at training time typically help

® Feature name=>number mapping is the problem;
the parameter vector is fine

® Feature hashing: make e.g. N(u,v,w) mapping random
with collisions (!)

® Accuracy loss low since features are rare. Works really
well, and extremely practical computational properties
(memory usage known in advance)

® Practically: use a fast string hashing function (murmurhash
or Python’s internal one, etc.)
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Feature selection

® Count cutoffs: computational, not performance
® Offline feature selection: MI/IG vs. chi-square

® || regularization: encourages O sparsity

min —logpe(y|a?)+>\zwj| g@ @@

N 4

—

L1 L2

® | | optimization: convex but nonsmooth; requires
subgradient methods

Thursday, February 2, 17



