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MaxEnt / Log-Linear models
• x: input  (all previous words)

• y: output  (next word)

• f(x,y) => Rd feature function [[domain knowledge here!]]

• v:  Rd  parameter vector (weights)For any x 2 X , y 2 Y , the model defines a condtional probability

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

Here exp(x) = ex, and v ·f(x, y) =
P

d

k=1 vkfk(x, y) is the inner product between
v and f(x, y). The term p(y|x; v) is intended to be read as “the probability of y
conditioned on x, under parameter values v”.

We now describe the components of the model in more detail, first focusing on
the feature-vector definitions f(x, y), then giving intuition behind the model form

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

5 Features

As described in the previous section, for any pair (x, y), f(x, y) 2 Rd is a feature
vector representing that pair. Each component f

k

(x, y) for k = 1 . . . d in this vector
is referred to as a feature. The features allows us to represent different properties
of the input x, in conjunction with the label y. Each feature has an associated
parameter, v

k

, whose value is estimated using a set of training examples. The
training set consists of a sequence of examples (x(i), y(i)) for i = 1 . . . n, where
each x(i) 2 X , and each y(i) 2 Y .

In this section we first give an example of how features can be constructed for
the language modeling problem, as introduced earlier in this note; we then describe
some practical issues in defining features.

5.1 Features for the Language Modeling Example

Consider again the language modeling problem, where the input x is a sequence of
words w1w2 . . . wi�1, and the label y is a word. Figure 1 shows a set of example
features for this problem. Each feature is an indicator function: that is, each feature
is a function that returns either 1 or 0. It is extremely common in NLP applications
to have indicator functions as features. Each feature returns the value of 1 if some
property of the input x conjoined with the label y is true, and 0 otherwise.

The first three features, f1, f2, and f3, are analogous to unigram, bigram, and
trigram features in a regular trigram language model. The first feature returns 1 if
the label y is equal to the word model, and 0 otherwise. The second feature returns
1 if the bigram hw

i�1 yi is equal to hstatistical modeli, and 0 otherwise. The third
feature returns 1 if the trigram hw

i�2 w
i�1 yi is equal to hany statistical modeli,

6

P (w1..wT ) =

Y

t

P (wt | w1..wt�1)

=

Y

t

exp(v · f(w1..wt�1, wt))P
w2V exp(v · f(w1..wt�1, w))

Application to history-based LM:
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3

f1(x, y) =

⇢
1 if y = model

0 otherwise

f2(x, y) =

⇢
1 if y = model and wi�1 = statistical

0 otherwise

f3(x, y) =

⇢
1 if y = model, wi�2 = any, wi�1 = statistical

0 otherwise

f4(x, y) =

⇢
1 if y = model, wi�2 = any

0 otherwise

f5(x, y) =

⇢
1 if y = model, wi�1 is an adjective
0 otherwise

f6(x, y) =

⇢
1 if y = model, wi�1 ends in “ical”
0 otherwise

f7(x, y) =

⇢
1 if y = model, “model” is not in w1, . . . wi�1

0 otherwise

f8(x, y) =

⇢
1 if y = model, “grammatical” is in w1, . . . wi�1

0 otherwise

Figure 1: Example features for the language modeling problem, where the input x
is a sequence of words w1w2 . . . wi�1, and the label y is a word.

7

• These are sparse.  But still very useful.
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Feature templates

• Generate large collection of features from single template

• Not part of (standard) log-linear mathematics, but how you 
actually build these things

• e.g. Trigram feature template:
For every (u,v,w) trigram in training data, create feature

4

ing data, create a feature

f
N(u,v,w)(x, y) =

(
1 if y = w, w

i�2 = u, w
i�1 = v

0 otherwise

where N(u, v, w) is a function that maps each trigram in the training data to a
unique integer.

A couple of notes on this definition:

• Note that the template only generates trigram features for those trigrams
seen in training data. There are two reasons for this restriction. First, it is
not feasible to generate a feature for every possible trigram, even those not
seen in training data: this would lead to V 3 features, where V is the number
of words in the vocabulary, which is a very large set of features. Second, for
any trigram (u, v, w) not seen in training data, we do not have evidence to
estimate the associated parameter value, so there is no point including it in
any case.1

• The function N(u, v, w) maps each trigram to a unique integer: that is, it
is a function such that for any trigrams (u, v, w) and (u0, v0, w0

) such that
u 6= u0, v 6= v0, or w 6= w0, we have

N(u, v, w) 6= N(u0, v0, w0
)

In practice, in implementations of feature templates, the function N is imple-
mented through a hash function. For example, we could use a hash table to
hash strings such as trigram=any statistical model to integers.
Each distinct string is hashed to a different integer.

Continuing with the example, we can also define bigram and unigram feature
templates:

Definition 3 (Bigram feature template) For any bigram (v, w) seen in training
data, create a feature

f
N(v,w)(x, y) =

(
1 if y = w, w

i�1 = v
0 otherwise

where N(v, w) maps each bigram to a unique integer.
1This isn’t quite accurate: there may in fact be reasons for including features for trigrams

(u, v, w) where the bigram (u, v) is observed in the training data, but the trigram (u, v, w) is not
observed in the training data. We defer discussion of this until later.

9

• At training time: record N(u,v,w) mapping

• At test time: extract trigram features and check if they are in the 
feature vocabulary

• Feature engineering:  iterative cycle of model development
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Feature subtleties

• On training data, generate all features under 
consideration

• Subtle issue: partially unseen features

• At testing time, a completely new feature has to be 
ignored (weight 0)

• Assuming a conditional log-linear model,

• Features typically conjoin between aspects of both 
input and output

• Features can only look at the output  f(y)

• Invalid: Features that only look at the input

5
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Multiclass Log. Reg.

• What does this look like in log-linear form?

6

• “Complete input-output conjunctions” generator: very common and 
effective

• Log-linear models give more flexible forms
(e.g. disjunctions on output classes)

• Ambiguous term: “feature”

• Partially “unseen” features: typically helpful

P (y | x) =
exp(

P
j ✓j,yxj)P

y0 exp(
P

j ✓j,y0
xj)
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Learning

7

Note that the inner products can take any value in the reals, positive or negative.
Intuitively, if the inner product v · f(x, y) for a given word y is high, this indicates
that the word has high probability given the context x. Conversely, if v · f(x, y) is
low, it indicates that y has low probability in this context.

The inner products v ·f(x, y) can take any value in the reals; our goal, however,
is to define a conditional distribution p(y|x). If we take

exp (v · f(x, y))

for any label y, we now have a value that is greater than 0. If v · f(x, y) is high,
this value will be high; if v · f(x, y) is low, for example if it is strongly negative,
this value will be low (close to zero).

Next, if we divide the above quantity by
X

y

02Y
exp

�
v · f(x, y0)

�

giving

p(y|x; v) = exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0)) (3)

then it is easy to verify that we have a well-formed distribution: that is,
X

y2Y
p(y|x; v) = 1

Thus the denominator in Eq. 3 is a normalization term, which ensures that we have
a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�

13

@

@vj
log p(y|x; v) =

• Log-likelihood is concave

• (At least with regularization: typically linearly separable)

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K THE BANK
def= C(THE BANK)

C(THE)
(9)

Another estimate may be provided by a particular trigger pair, say (LOAN BANK). Assume we want
to capture the dependency of “BANK” on whether or not “LOAN” occurred before it in the same document.
Thus a different partition of the event space will be added, as in figure 6. Each of the two rows is an
equivalence class in this partition4.

h ends in “THE” h ends in “OF” . . . . . .
. . . .

LOAN h
. . . .
. . . .

LOAN h
. . . .

Table 6: The Event Space (h w) is independently partitioned by the binary trigger word “LOAN” into
another set of equivalence classes (depicted here as rows).

Similarly to the bigram case, consider now one such equivalence class, say, the one where “LOAN” did
occur in the history. The trigger component assigns the same probability estimate to all events in that class:

PLOAN BANK(BANK LOAN h) = K BANK LOAN h (10)

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K BANK LOAN h
def= C(BANK LOAN h)

C(LOAN h) (11)

Thus the bigram component assigns the same estimate to all events in the same column, whereas the trigger
component assigns the same estimate to all events in the same row. These estimates are clearly mutually
inconsistent. How can they be reconciled?

Linear interpolation solves this problem by averaging the two answers. The backoff method solves it by
choosing one of them. The Maximum Entropy approach, on the other hand, does away with the inconsistency
by relaxing the conditions imposed by the component sources.

Consider the bigram. Under Maximum Entropy, we no longer insist that P(BANK h) always have the same
value (K THE BANK ) whenever the history ends in “THE”. Instead, we acknowledge that the history may have
other features that affect the probability of “BANK”. Rather, we only require that, in the combined estimate,
P(BANK h) be equal to K THE BANK on average in the training data. Equation 8 is replaced by

E
h ends in “THE”

[ PCOMBINED(BANK h) ] = K THE BANK (12)

where E stands for an expectation, or average. Note that the constraint expressed by equation 12 is much
weaker than that expressed by equation 8. There are many different functions PCOMBINED that would satisfy it.
Only one degree of freedom was removed by imposing this new constraint, and many more remain.

4The equivalence classes are depicted graphically as rows and columns for clarity of exposition only. In reality, they need not be
orthogonal.

11
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fun with the chain rule
@

@vj
log p(y|x; v) =
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• (At least with regularization: typically linearly separable)
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X

y0

p(y0|x; v)fj(x, y0)
@

@vj
log p(y|x; v) =
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@
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• Log-likelihood is concave

• (At least with regularization: typically linearly separable)

Feature in data? Feature in posterior?
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Learning

• Gradient at a single example: can it be zero?

• Full dataset gradient: First moments match at mode

7
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a distribution that sums to one. In summary, the function

exp (v · f(x, y))
P

y

02Y exp (v · f(x, y0))

performs a transformation which takes as input a set of values {v ·f(x, y) : y 2 Y},
where each v · f(x, y) can take any value in the reals, and as output produces a
probability distribution over the labels y 2 Y .

Finally, we consider where the name log-linear models originates from. It
follows from the above definitions that

log p(y|x; v) = v · f(x, y)� log

X

y

02Y
exp

�
v · f(x, y0)

�

= v · f(x, y)� g(x)

where
g(x) = log

X

y

02Y
exp

�
v · f(x, y0)

�
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fun with the chain rule

fj(x, y) �
X

y0

p(y0|x; v)fj(x, y0)
@

@vj
log p(y|x; v) =

• Log-likelihood is concave

• (At least with regularization: typically linearly separable)

Feature in data? Feature in posterior?

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K THE BANK
def= C(THE BANK)

C(THE)
(9)

Another estimate may be provided by a particular trigger pair, say (LOAN BANK). Assume we want
to capture the dependency of “BANK” on whether or not “LOAN” occurred before it in the same document.
Thus a different partition of the event space will be added, as in figure 6. Each of the two rows is an
equivalence class in this partition4.

h ends in “THE” h ends in “OF” . . . . . .
. . . .

LOAN h
. . . .
. . . .

LOAN h
. . . .

Table 6: The Event Space (h w) is independently partitioned by the binary trigger word “LOAN” into
another set of equivalence classes (depicted here as rows).

Similarly to the bigram case, consider now one such equivalence class, say, the one where “LOAN” did
occur in the history. The trigger component assigns the same probability estimate to all events in that class:

PLOAN BANK(BANK LOAN h) = K BANK LOAN h (10)

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K BANK LOAN h
def= C(BANK LOAN h)

C(LOAN h) (11)

Thus the bigram component assigns the same estimate to all events in the same column, whereas the trigger
component assigns the same estimate to all events in the same row. These estimates are clearly mutually
inconsistent. How can they be reconciled?

Linear interpolation solves this problem by averaging the two answers. The backoff method solves it by
choosing one of them. The Maximum Entropy approach, on the other hand, does away with the inconsistency
by relaxing the conditions imposed by the component sources.

Consider the bigram. Under Maximum Entropy, we no longer insist that P(BANK h) always have the same
value (K THE BANK ) whenever the history ends in “THE”. Instead, we acknowledge that the history may have
other features that affect the probability of “BANK”. Rather, we only require that, in the combined estimate,
P(BANK h) be equal to K THE BANK on average in the training data. Equation 8 is replaced by

E
h ends in “THE”

[ PCOMBINED(BANK h) ] = K THE BANK (12)

where E stands for an expectation, or average. Note that the constraint expressed by equation 12 is much
weaker than that expressed by equation 8. There are many different functions PCOMBINED that would satisfy it.
Only one degree of freedom was removed by imposing this new constraint, and many more remain.

4The equivalence classes are depicted graphically as rows and columns for clarity of exposition only. In reality, they need not be
orthogonal.
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Moment matching
• Example: Rosenfeld’s trigger words

• “.... loan .... went into the bank”

8

Empirical history prob.
(Bigram model estimate)

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K THE BANK
def= C(THE BANK)

C(THE)
(9)

Another estimate may be provided by a particular trigger pair, say (LOAN BANK). Assume we want
to capture the dependency of “BANK” on whether or not “LOAN” occurred before it in the same document.
Thus a different partition of the event space will be added, as in figure 6. Each of the two rows is an
equivalence class in this partition4.

h ends in “THE” h ends in “OF” . . . . . .
. . . .

LOAN h
. . . .
. . . .

LOAN h
. . . .

Table 6: The Event Space (h w) is independently partitioned by the binary trigger word “LOAN” into
another set of equivalence classes (depicted here as rows).

Similarly to the bigram case, consider now one such equivalence class, say, the one where “LOAN” did
occur in the history. The trigger component assigns the same probability estimate to all events in that class:

PLOAN BANK(BANK LOAN h) = K BANK LOAN h (10)

That estimate is derived from the distribution of the training data in that class. Specifically, it is derived
as:

K BANK LOAN h
def= C(BANK LOAN h)

C(LOAN h) (11)

Thus the bigram component assigns the same estimate to all events in the same column, whereas the trigger
component assigns the same estimate to all events in the same row. These estimates are clearly mutually
inconsistent. How can they be reconciled?

Linear interpolation solves this problem by averaging the two answers. The backoff method solves it by
choosing one of them. The Maximum Entropy approach, on the other hand, does away with the inconsistency
by relaxing the conditions imposed by the component sources.

Consider the bigram. Under Maximum Entropy, we no longer insist that P(BANK h) always have the same
value (K THE BANK ) whenever the history ends in “THE”. Instead, we acknowledge that the history may have
other features that affect the probability of “BANK”. Rather, we only require that, in the combined estimate,
P(BANK h) be equal to K THE BANK on average in the training data. Equation 8 is replaced by

E
h ends in “THE”

[ PCOMBINED(BANK h) ] = K THE BANK (12)

where E stands for an expectation, or average. Note that the constraint expressed by equation 12 is much
weaker than that expressed by equation 8. There are many different functions PCOMBINED that would satisfy it.
Only one degree of freedom was removed by imposing this new constraint, and many more remain.

4The equivalence classes are depicted graphically as rows and columns for clarity of exposition only. In reality, they need not be
orthogonal.
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The backoff method does not actually reconcile multiple models. Instead, it chooses among them. One
problem with this approach is that it exhibits a discontinuity around the point where the backoff decision is
made. In spite of this problem, backing off is simple, compact, and often better than linear interpolation.

A problem common to both linear interpolation and backoff is that they give rise to systematic overestima-
tion of some events. This problem was discussed and solved in [Rosenfeld and Huang 92], and the solution
used in a speech recognition system in [Chase et al. 94].

4 The Maximum Entropy Principle

In this section we discuss an alternative method of combining knowledge sources, which is based on the
Maximum Entropy approach first proposed by E. T. Jaynes in the 1950’s ([Jaynes 57]). The Maximum
Entropy principle was first applied to language modeling by [DellaPietra et al. 92].

In the methods described in the previous section, each knowledge source was used separately to construct
a model, and the models were then combined. Under the Maximum Entropy approach, one does not construct
separate models. Instead, one builds a single, combined model, which attempts to capture all the information
provided by the various knowledge sources. Each such knowledge source gives rise to a set of constraints,
to be imposed on the combined model. These constraints are typically expressed in terms of marginal
distributions, as in the example at the end of section 3.1. This solves the inconsistency problem discussed in
that section.

The intersection of all the constraints, if not empty, contains a (possibly infinite) set of probability
functions, which are all consistent with the knowledge sources. The second step in the Maximum Entropy
approach is to choose, from among the functions in that set, that function which has the highest entropy (i.e.,
the “flattest” function). In other words, once the desired knowledge sources have been incorporated, no other
features of the data are assumed about the source. Instead, the “worst” (flattest) of the remaining possibilities
is chosen.

Let us illustrate these ideas with a simple example.

4.1 An Example

Assumewewish to estimateP(“BANK h), namely the probability of theword “BANK”given the document’s
history. One estimate may be provided by a conventional bigram. The bigram would partition the event space
(h w) based on the last word of the history. The partition is depicted graphically in figure 5. Each column is
an equivalence class in this partition.

h ends in “THE” h ends in “OF” . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

Table 5: The Event Space (h w) is partitioned by the bigram into equivalence classes (depicted here as
columns). In each class, all histories end in the same word.

Consider one such equivalence class, say, the one where the history ends in “THE”. The bigram assigns
the same probability estimate to all events in that class:

PBIGRAM(BANK THE) = K THE BANK (8)
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Log-linear model:
has weaker property

• Maximum Entropy view of a log-linear model:

• Start with feature expectations as constraints. 
What is the highest entropy distribution that satisfies them?
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• stopped here 2/2
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Gradient descent

• Batch gradient descent -- doesn’t work well by 
itself

• Most commonly used alternatives

• LBFGS  (adaptive version of batch GD) 

• SGD, one example at a time

• and adaptive variants:  Adagrad, Adam, etc.

• Intuition

• Issue: Combining per-example sparse updates
with regularization updates

• Lazy updates

• Occasional regularizer steps (easy to implement)

10
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Engineering

• Sparse dot products are crucial!

• Lots and lots of features?

• Millions to billions of features: performance often keeps 
improving!

• Features seen only once at training time typically help

• Feature name=>number mapping is the problem;
the parameter vector is fine

• Feature hashing:  make e.g. N(u,v,w) mapping random 
with collisions (!)

• Accuracy loss low since features are rare.  Works really 
well, and extremely practical computational properties 
(memory usage known in advance)

• Practically: use a fast string hashing function (murmurhash 
or Python’s internal one, etc.)

11
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Feature selection

• Count cutoffs: computational, not performance

• Offline feature selection: MI/IG vs. chi-square

• L1 regularization: encourages θ sparsity

12

min

✓
� log p✓(y|x) + �

X

j

|✓j |

• L1 optimization: convex but nonsmooth; requires 
subgradient methods
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