
The Union-Find Problem

Kruskal’s algorithm for finding an MST presented us with
a problem in data-structure design. As we looked at each
edge, cheapest first, we had to determine whether its two
endpoints were connected by the edges we had added to
the tree so far.

Remember that on a graph withn nodes ande edges, the
Kruskal algorithm tookO(e log e) steps to sort the edges
by cost,O(e) steps to decide whether each edge should
be added (O(1) steps for each edge) andO(n2) time to
maintain a table telling us which nodes were connected
to which. The total time wasO(n2 + e log e), which for
sparse graphs isO(n2).

Thus keeping track of the components is the bottleneck
step in the algorithm in the general case, as it is what
is stopping us from running the algorithm inO(e log e)
steps.

1



The problem of maintaining the connected components
of the growing forest in Kruskal’s algorithm is a spe-
cial case of a more general problem called theunion-
find problem. In this lecture we’ll look at a series of
increasingly efficient implementations of data structures
that solve the union-find problem. We’ll fairly quickly
see how to improve the performance to make the Kruskal
running timeO(e log e), but the later solutions are of in-
terest for other applications, as well as theoretically.

Unlike our “improved” algorithms for integer multiplica-
tion and matrix multiplication, these improved data struc-
tures are simple and universally practical. The mathemat-
ical challenge isanalyzingthem to see exactly how fast
they are.

2



A union-find data structure maintains a family of dis-
joint nonempty sets. Each set in the family has an el-
ement called itslabel. The data structure supports the
following three operations:

• MAKESET(x) creates a new set{x} and adds it to the
family. The elementx must not be an element of any
existing set in the family.

• UNION(x, y) changes the family by replacing two sets,
the one containingx and the one containingy, by a
single set that is the union of these two sets. It is a
no-op ifx andy are already in the same set.

• FIND(x) returns the label of the set containingx.

Note that the changes in the family of sets are monotone.
Once an element appears it remains in some set in the
family, and once two elements are in the same set they
stay in the same set.

It is easy to see how to use such a data structure to imple-
ment Kruskal’s algorithm. We first perform a MAKESET

for each vertex of the graph. Then for each edge(u, v)
we do a FIND for bothu andv, followed by UNION(u, v)
if they are not already in the same set.

3



Review of Our First Solution

Our earlier implementation of Kruskal’s algorithm used
what was in effect a simple implementation of a union-
find data structure. Let’s put it into our new terminology:

• We maintain a table with each element and the label
of its set.

• A M AKESET is performed by adding a new entry to
the table, whose label is itself. (We are not required
to check whether the element is already there.)

• The operation UNION(x, y) operation is performed
by sweeping the table, changing the label ofx, and
of all entries with the same label asx, to the label of
y. (Or we could change they labels to thex labels, as
long as we are consistent.)

• For a FIND(x) operation we simply return the label of
the entryx. (We are not charged for any search forx
in the table – we assume that we are given a pointer
to it.)

4



A First Improvement

This method takesO(n) time for each UNION operation,
wheren is the number of elements in all the sets, and
O(1) for each MAKESET or FIND. In the Kruskal set-
ting we neededn − 1 UNION operations andO(e) FIND

operations, costing usO(n2 + e) for the data structure
operations orO(n2 + e log e) when we include the initial
sort of the edges.

How can we improve this? It seems wasteful to conduct a
linear search through the table to update the labels for the
UNION. What if we keep each set in a linked list rather
than keeping all of them in a table? We make a list node
for each element and give the node two pointers – one
to the label (at the head of the list) and one to the next
element of the set.

Now a MAKESET is still O(1) (create a new node with a
label pointer to itself and a null next pointer) and a FIND

is O(1) as well (just return the label pointer of the desired
node). How can we implement a UNION?

5



To implement UNION(x, y) we must:

• locate the heads of the two lists and the tail ofx’s list

• update the next pointer ofx’s tail to y’s head

• change the label pointer of each node iny’s list to x’s
head

How long does this take? The list heads are given to us by
pointers fromx andy, and we can keep a single pointer
from the head to the tail of each list. The appending is
thenO(1) time, but we have to change a separate pointer
for each node iny’s list. This could certainly beO(n) in
the worst case.

But we noted before that we could either mergex’s set
into y’s or vice versa. Does it make a difference?

6



The preponderence of the time taken by our UNION op-
eration is needed to change the labels of the elements of
y’s set. What if we keep track of the size of each set, and
always merge thesmallerset into thelarger? It seems at
though this would save at least some time.

This doesn’t help us in the worst case, because if our last
merge happens to deal with sets of roughly equal size,
we will needΘ(n) time to do it. But what we really care
about is thetotal time to perform aseriesof operations.

Determining this total time is our first example ofamor-
tized analysis. By breaking up the set of operations in
a different way, we can prove a bound on its total size.
Let’s consider the total time to performn− 1 UNION op-
erations. The bulk of the time spent is proportional to
the numer of labels changed. Rather than divide the label
changes into phases for each UNION, we group together
all the times that the label of agiven elementis changed.

Look at one particular elementx. It begins life in a set of
size1. When its label is changed, it must go into a set of
size at least2. The next time it is changed, this set of size
at least2 is merged with another set that isat least as big.
By induction, we can see that afteri label changes,x is
in a set of size at least2i.

7



Hence each element undergoes at mostlog n label changes.
Every label change is assigned to an element, so there are
at mostn log n, henceO(n log n), in all. The other oper-
ation in then UNIONs take onlyO(n) total time. This
gives us the result:

Theorem: The linked-list implementation, always merg-
ing the smaller set into the larger, takesO(n log n + m)
time to carry out any sequence ofm union-find opera-
tions on a set of sizen.

This is enough to remove the bottleneck in Kruskal’s al-
gorithm, so that it takesO(e log e) time. There are faster
ways to find an MST. Prim’s algorithm (cf. HW#2) takes
O(e + n log n) if Fibonacci heaps are used to implement
the priority queues needed. [CLRS] has more if you are
interested.

8



Representing Sets as Trees

Can we do even better? One idea is to avoid updating
every element of the smaller set each time, by making
the structure for each set atree instead of a linked list.
Now the node for each element has just one pointer, to
its parent:

• MAKESET: Create a node whose parent is itself, a
root.

• UNION: Change the parent of the root of the smaller
tree to be the root of the larger.

• FIND(x) : Follow the path fromx to the root of its
component, and return that root as the label.

9



There’s a problem here – the time for a FIND is no longer
O(1) but O(h), whereh is the height of the tree. A
UNION takes onlyO(1) once we have found the two roots,
but finding them also takesO(h). We’ll thus reclassify
the UNION as two FIND operations plus the pointer changes
to merge the trees, which we’ll call LINK .

With the smaller-into-larger rule, it is easy to prove by
induction that a tree of heighth always has at least2h

nodes, so that a tree withk nodes always has heightO(log k).
Actually, we get this property from a simpler rule – we
keep track of therank (height) of each node and always
merge the tree of lower rank into that of higher rank.

10



Improvements to the Tree Method

When we carry out the operation FIND(x), we compute
the label not only ofx but of all the nodes on the path
from x to its root. If we save this information, we can
carry out a future FIND on x, or on one of its ances-
tors, more quickly. Let’s try investing some time after
each FIND to change the parent pointers of all the nodes
on the path to the newly found root. This is calledtree
compressionand at most doubles the time for a FIND.
([CLRS] gives a nice recursive implementation of this
that avoids the need for any new pointers.)

What does this buy us? Remember that each UNION in-
cludes two FIND operations, and these will tend to flatten
the trees for the components they involve. The FIND op-
erations still takeO(h) time, whereh is the height of the
tree, but can we hope thath will be smaller than its for-
merO(log n)?

11



Ackermann’s Function

The analysis of our last (and fastest) implementation of
a union-find data structure turns out to involve a function
first defined as a mathematical curiosity,Ackermann’s
function.

In CMPSCI 601 we define theprimitive recursive func-
tions from N (the natural numbers) toN as the possible
results of a particular kind of recursive definition. An
equivalent definition is the set of function that can be
computer in an imperative language withbounded loops
but no unbounded loops.

Ackermann devised his function to be computable (by
a Turing machine, for example) but faster-growing than
anyprimitive recursive function.

12



Definition: We define an infinite sequence of functions
A0, A1, A2, . . . as follows:

• A0(x) = 1 + x for anyx ∈ N

• for k > 0, Ak(x) is Ak−1 applied tox, x times

We can compute the first fewAi’s easily:

• A1(x) is the result of adding1 to x, x times, or2x

• A2(x) is the result of doublingx, x times, orx2x

• A3(x) is greater thanthe result of raising2 to the
powerx, x times. The latter number is calledexp∗(x),
a tower of twosx high

• A4(x) is a lot bigger than that. . .

13



Definition: The Ackermann function A is defined by
A(k) = Ak(2). ThusA(0) = A0(2) = 1 + 3 = 3, A(1) =
A1(2) = 2(2) = 4, A(2) = A2(2) = 2 ·22 = 8, andA(3) =
A3(2) = A2(A2(2)) = A2(8) = 8 · 28 = 2048. The next
value,A(4), is greater thanexp∗(2048), an inconceivably
huge number.

Definition: The inverse Ackermann function α(n) is
defined to be the smallest numberk such thatA(k) ≥ n.
Thusα(n) ≤ 4 for any conceivable number.

Theorem: The running time needed to performm union-
find operations on a set of sizen is Θ(mα(n)), and the
upper bound is achieved by our last algorithm.

We’ll sketch the proof of the upper bound as time per-
mits.

14



A Potential Function

The technique used to prove theO(mα(n)) upper bound
is an interesting one. In mechanics the total energy of
a system consists of both kinetic and potential energy.
Here we will define apotential function on states of the
data structure, and measure the number of steps taken
plus the increase in potential (or minus the decrease in
potential) for each operation. We’ll prove that each op-
eration costsO(α(n)) in this amortized cost measure.
Even though a single operation might take more steps
than that, it must reduce the potential at the same time.
Since the potential will start at zero and finish non-negative,
theO(mα(n)) bound on the total amortized cost implies
anO(mα(n)) bound on the actual cost for allm steps.

15



The potential of the whole system will be the sum of a
non-negative potential for each node.

The cost of a root node, or of any node of rank zero,
will be α(n) times its rank. Other nodes have a more
complicated definition of potential, for which we’ll omit
the details (see section 21.4 of [CLRS]). There are two
parameters of such a node called thelevel `(x) and it-
eration number i(x), such that0 ≤ `(x) < α(n) and
1 ≤ i(x) ≤ r(x). The exact potential of a nodex is

r(x)[α(n) − `(x)] − i(x).

16



Effect of Moves on the Potential

The MAKESET operation creates a new node with zero
rank and hence zero potential, so its only cost isO(1) for
the actual operations it uses.

Recall that we broke the UNION operation into two FIND ’s
and a LINK . The latter changes only one pointer, from the
root of one tree to the root of another. If these two roots
were at the same rank, the LINK increases the rank of
one root by one, and thus increases its potential byα(n).
It turns out that no other node’s potential is changed, and
since there are onlyO(1) actual operations the total amor-
tized cost isO(α(n)).

Finally, a FIND operation involves all the nodes from the
node found to its root – the number of these nodes,s, may
be greater thanα. But it turns out that with this definition
of potential, a FIND operation with its tree compression
decreasesthe potential of all but possiblyα(n) + 2 of
theses nodes. With a careful choice of the units with
which to measure actual steps, this makes the amortized
cost of the FIND operation onlyO(α(n)).

17



So any sequence ofm MAKESET, FIND, and LINK oper-
ations takesO(mα(n)) time. The same holds, with a dif-
ferent constant, for any sequence ofm MAKESET, FIND,
and UNION operations.

There is a matchinglower bound argument that we omit
here. It shows that any data structure for union-find,
under certain general assumptions, must takeΩ(mα(n))
time. Detailed references may be found at the end of
Chapter 21 of [CLRS].

18


