Def: DTIME, NTIME, DSPACE, measured on Multi-tape Turing Machines.

Th: DTIME[t(n)] ⊆ RAM-TIME[t(n)] ⊆ DTIME[(t(n))^3]

\[L \equiv \text{DSPACE}[\log n] \]
\[P \equiv \text{DTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{DTIME}[n^i] \]
\[\text{NP} \equiv \text{NTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{NTIME}[n^i] \]
\[\text{PSPACE} \equiv \text{DSPACE}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{DSPACE}[n^i] \]

Th: For \(t(n) \geq n, s(n) \geq \log n, \)

\[\text{DTIME}[t(n)] \subseteq \text{NTIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \]
\[\text{DSPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}] \]

Cor: \(L \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \)
Definition 6.1 The *busy beaver function* $\sigma(n)$ is the maximum number of one’s that an n state TM with alphabet $\Sigma = \{0, 1\}$ can leave on its tape and halt when started on the all 0 tape. (To fit our definitions, note that “0” is now the “blank character”.)

Note that $\sigma(n)$ is well defined:
There are only finitely many n-state TMs, with $\Sigma = \{0, 1\}$. Some finite subset, F_n, of these eventually halt on input 0.
Some element of F_n prints the max # of 1’s $= \sigma(n)$.

♠
<table>
<thead>
<tr>
<th></th>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$q_2, 1,\rightarrow$</td>
<td>$q_3, 0,\rightarrow$</td>
<td>$q_3, 1,\leftarrow$</td>
</tr>
<tr>
<td>1</td>
<td>$h, 1,\neg$</td>
<td>$q_2, 1,\rightarrow$</td>
<td>$q_1, 1,\leftarrow$</td>
</tr>
</tbody>
</table>

\[
\sigma(3) \geq 6
\]
How quickly does $\sigma(n)$ grow as n gets large?

Is $\sigma(n) \in O(n^2)$?

$O(n^3)$?

$O(2^n)$?

$O(n!)$?

$O(2^{2^n})$?

$O(\exp^*(n))$?

$O(\exp^*(\exp^*(n)))$?

\[
\begin{align*}
\exp^*(n) &= 2^{\left\lfloor 2^{\left\lfloor 2^{\cdots^{2}}\right\rfloor} \right\rfloor} \\
&= 2^{\left\lfloor 2^{\left\lfloor 2^{\cdots^{2}}\right\rfloor} \right\rfloor}
\end{align*}
\]
<table>
<thead>
<tr>
<th>States</th>
<th>Max # of 1’s</th>
<th>Lower Bound for $\sigma(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$\sigma(3)$</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>$\sigma(4)$</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>$\sigma(5)$</td>
<td>≥ 4098</td>
</tr>
<tr>
<td>6</td>
<td>$\sigma(6)$</td>
<td>$> 10^{865}$</td>
</tr>
</tbody>
</table>

See the web pages of Penousal Machado (eden.dei.uc.pt) and Heiner Marxen (www.drb.insel.de/heiner/BB) for more on this problem and its variants.
Theorem 6.2 Let $f : \mathbb{N} \to \mathbb{N}$ be a total, recursive function.

$$\lim_{n \to \infty} \left(\frac{f(n)}{\sigma(n)} \right) = 0$$

That is, $f(n) = o(\sigma(n))$.

Proof:

$$g(n) = n \cdot \left(1 + \sum_{i=0}^{n} f(i) \right)$$

Note:

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$$

We will show for all sufficiently large n,

$$\sigma(n) \geq g(n)$$
$g(n)$ is computed by a k-state TM for some k.
For any n, define the TM

$$C_n = \begin{array}{c}
\text{print } n \\
\text{compute } g \\
\text{binary to unary}
\end{array}
\begin{array}{c}
\lceil \log n \rceil \\
k \\
17
\end{array}$$

C_n has $\lceil \log n \rceil + k + 17$ states.
C_n prints $g(n)$ 1’s.
Once n is big enough that $n \geq \lceil \log n \rceil + k + 17$,
$$\sigma(n) \geq \sigma(\lceil \log n \rceil + k + 17) \geq g(n)$$
On HW#2, we define a pairing function:

$$P : \mathbb{N} \times \mathbb{N} \xrightarrow{1:1} \mathbb{N}$$

$$P(L(w), R(w)) = w$$
$$L(P(i, j)) = i$$
$$R(P(i, j)) = j$$

We can use the pairing function to think of a natural number as a pair of natural numbers.

Thus, the input to a Turing machine is a single binary string which may be thought of as a natural number, a pair of natural numbers, a triple of natural numbers, and so forth. (Later we will worry about the complexity of the pairing and string-conversion functions – do you think they are in \mathbb{L})?
Turing machines can be encoded as character strings which can be encoded as binary strings which can be encoded as natural numbers.

<table>
<thead>
<tr>
<th>TM_n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,0,→</td>
<td>3,□,→</td>
<td>0,0,−</td>
<td>0,0,−</td>
</tr>
<tr>
<td>1</td>
<td>1,1,→</td>
<td>4,□,→</td>
<td>0,1,−</td>
<td>0,1,−</td>
</tr>
<tr>
<td>□</td>
<td>2,□,←</td>
<td>0,□,−</td>
<td>1,0,←</td>
<td>1,1,←</td>
</tr>
<tr>
<td>▶</td>
<td>1,▶,→</td>
<td>0,▶,−</td>
<td>0,▶,−</td>
<td>0,▶,−</td>
</tr>
</tbody>
</table>

ASCII: 1,0,→; 1,1,→; 2,□,←; 1,▶,→; ··· 0,▶,−

$\{0,1\}^*: w$

$N:\ n$

There is a simple, countable listing of all TM’s:

M_0, M_1, M_2, \cdots
Theorem 6.3 There is a Universal Turing Machine U such that,

$$U(\langle n, m \rangle) = M_n(m)$$

Proof: Given $\langle n, m \rangle$, compute n and m. n is a binary string encoding the state table of TM M_n. We can simulate M_n on input m by keeping track of its state, its tape, and looking at its state table, n, at each simulated step. ♠

Let’s look at $L(U)$, the set of numbers $P(n, m)$ such that the Turing machine M_n eventually halts on input n. We’ll call this language HALT. The existence of U proves that HALT is r.e., and we’ll now show it’s not recursive.
Theorem 6.4 (Unsolvability of the Halting Problem)
HALT is r.e. but not recursive.

Proof:

\[
\text{HALT} = \{w \mid U(w) \text{ eventually halts}\} = \{w \mid U'(w) = 1\}
\]

\[
U' = \begin{array}{c|c|c}
U & \text{erase tape} & \text{print 1} \\
\end{array}
\]

Suppose HALT were recursive. Then \(\sigma(n)\) would be a total recursive function: Cycle through all \(n\)-state TMs, \(M_i\), and if \(P(i, 0) \in \text{HALT}\), then count the number of 1’s in \(M_i(0)\). Return the maximum of these. But \(\sigma(n)\) isn’t total recursive, so we have a contradiction.

\[\spadesuit\]
\[W_i = \{ n \mid M_i(n) = 1 \} \]

The set of all r.e. sets = \(W_0, W_1, W_2, \cdots \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(W_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(W_0)</td>
</tr>
<tr>
<td>1</td>
<td>(W_1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(W_2)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(W_3)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(W_4)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(W_5)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(W_6)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(W_7)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(W_8)</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(K)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\overline{K})</td>
</tr>
</tbody>
</table>
\[K = \{ n \mid M_n(n) = 1 \} \]
\[= \{ n \mid U(P(n,n)) = 1 \} \]
\[= \{ n \mid n \in W_n \} \]

Theorem 6.5 \(K \) is not r.e.

Proof: \(\overline{K} = \{ n \mid n \notin W_n \} \)

Suppose \(\overline{K} \) were r.e. Then for some \(c \),

\[\overline{K} = W_c = \{ n \mid M_c(n) = 1 \} \]

\[c \in K \iff M_c(c) = 1 \iff c \in W_c \iff c \in \overline{K} \]

\(\spadesuit \)

Corollary 6.6 \(K \in \text{r.e.} - \text{Recursive} \)