Turing Machines: \[M = (Q, \Sigma, \delta, s) \]

\[\delta : Q \times \Sigma \rightarrow (Q \cup \{h\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\} \]

Def: Function \(f \) is *recursive* iff it is computed by a TM. \(f \) may be total or partial.

Def: A set \(S \) is *recursive* iff its characteristic function \(\chi_S \) is a recursive function.

Recursive is the set of recursive sets.

A set \(S \) is *recursively enumerable (r.e.)* iff its partial characteristic function \(p_S \) is a recursive function.

r.e. is the set of r.e. sets.

Th:

Recursive = r.e. \(\cap \) co-r.e.
Definition 5.1 A string $w \in \Sigma^*$ is a palindrome iff it is the same as its reversal, i.e., $w = w^R$. ♣

Examples of palindromes:

- 101
- 1101001011
- ABLE WAS I ERE I SAW ELBA
- AMANAPLANACANALPANAMA

Fact 5.2 The set of PALINDROMES (over a fixed alphabet, Σ is context-free but not regular.)
Proposition 5.3 The set of PALINDROMES (over a fixed alphabet, Σ) is a recursive set.

Proof:

```
A B L E E L B A □
```

Fact 5.4 Time $O(n^2)$ is necessary and sufficient for a one-tape Turing machine to accept the set, PALINDROMES.

Proof: Time $O(n^2)$ suffices. One way to see this is to do problems 2.8.4, 2.8.5 from [P].
Definition 5.5 A k-tape Turing machine, $M = (Q, \Sigma, \delta, s)$

Q: finite set of states; $s \in Q$

Σ: finite set of symbols;

$\delta : Q \times \Sigma^k \rightarrow (Q \cup \{h\}) \times (\Sigma \times \{\leftarrow, \rightarrow, _\})^k$

Proposition 5.6 Palindromes can be accepted in $\text{DTIME}[n]$ on a 2-tape TM.
Proof: (that PALINDROMES \in DTIME$[n]$)

\[
\begin{array}{c}
\square A \quad B \quad L \quad E \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad E \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad L \quad E \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad L \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad L \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad L \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square A \quad B \quad L \quad E \quad L \quad E \quad L \quad B \quad A \quad \square \\
\vdots \quad \vdots \\
\square 1 \quad \square \\
\end{array}
\]
Definition 5.7 A set $A \subseteq \Sigma^*$ is in $\text{DTIME}[t(n)]$ iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

1. $A = \mathcal{L}(M) \equiv \{w \in \Sigma^* \mid M(w) = 1\}$, and

2. $\forall w \in \Sigma^*, M(w)$ halts within $c(1 + t(|w|))$ steps.
Definition 5.8 A set $A \subseteq \Sigma^*$ is in $\text{DSPACE}[s(n)]$ iff there exists a deterministic, multi-tape TM, M, and a constant c, such that,

1. $A = \mathcal{L}(M)$, and
2. $\forall w \in \Sigma^*, M(w)$ uses at most $c(1 + s(|w|))$ work-tape cells.

(Note: The input tape is read-only and not counted as space used. Otherwise space bounds below n would rarely be useful. But in the real world we often want to limit space and work with read-only input.)

Example: $\text{PALINDROMES} \in \text{DTIME}[n], \text{DSPACE}[n]$. In fact, $\text{PALINDROMES} \in \text{DSPACE}[\log n]$.
Definition 5.9 \(f : \Sigma^* \to \Sigma^* \) is in \(F(\text{DTIME}[t(n)]) \) iff there exists a deterministic, multi-tape TM, \(M \), and a constant \(c \), such that,

1. \(f = M(\cdot) \);
2. \(\forall w \in \Sigma^*, M(w) \) halts within \(c(1 + t(|w|)) \) steps;
3. \(|f(w)| \leq |w|^{O(1)} \), i.e., \(f \) is polynomially bounded.

Definition 5.10 \(f : \Sigma^* \to \Sigma^* \) is in \(F(\text{DSPACE}[s(n)]) \) iff there exists a deterministic, multi-tape TM, \(M \), and a constant \(c \), such that,

1. \(f = M(\cdot) \);
2. \(\forall w \in \Sigma^*, M(w) \) uses at most \(c(1 + s(|w|)) \) work-tape cells;
3. \(|f(w)| \leq |w|^{O(1)} \), i.e., \(f \) is polynomially bounded.

(Input tape is “read-only”; Output tape is “write-only”. Neither is counted as space used.)

Example: \(\text{Plus} \in F(\text{DTIME}[n]) \), \(\text{Times} \in F(\text{DTIME}[n^2]) \)
L \equiv \text{DSPACE}[\log n]

P \equiv \text{DTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{DTIME}[n^i]

\text{PSPACE} \equiv \text{DSPACE}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{DSPACE}[n^i]
Theorem 5.11 For any functions \(t(n) \geq n, s(n) \geq \log n \), we have

\[
\text{DTIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \\
\text{DSPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}]
\]

Proof: Let \(M \) be a \(\text{DSPACE}[s(n)] \) TM, let \(w \in \Sigma^* \), let \(n = |w| \)

\(M(w) \) has \(k \) tapes and uses at most \(cs(n) \) work-tape cells. \(M(w) \) has at most,

\[
|Q| \cdot (n + cs(n) + 2)^k \cdot |\Sigma|^{cs(n)} < 2^{k's(n)}
\]

possible configurations.

Thus, after \(2^{k's(n)} \) steps, \(M(w) \) must be in an infinite loop.

\(\spadesuit \)

Corollary 5.12 \(\text{L} \subseteq \text{P} \subseteq \text{PSPACE} \)
Using $O(\log n)$ workspace, we can keep track of and manipulate two pointers into the input.
RAM = Random Access Machine

Memory: \[\kappa | r_0 | r_1 | r_2 | r_3 | r_4 | \cdots | r_i | \cdots \]

\(\kappa = \) program counter; \(r_0 = \) accumulator

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operand</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ j (\uparrow j) (= j)</td>
<td>(r_0 := (r_j</td>
<td>r_{r_j}</td>
</tr>
<tr>
<td>STORE (j) (\uparrow j)</td>
<td>((r_j</td>
<td>r_{r_j}) := r_0)</td>
</tr>
<tr>
<td>ADD (j) (\uparrow j) (= j)</td>
<td>(r_0 := r_0 + (r_j</td>
<td>r_{r_j}</td>
</tr>
<tr>
<td>SUB (j) (\uparrow j) (= j)</td>
<td>(r_0 := r_0 - (r_j</td>
<td>r_{r_j}</td>
</tr>
<tr>
<td>HALF</td>
<td></td>
<td>(r_0 := \lfloor r_0/2 \rfloor)</td>
</tr>
<tr>
<td>JUMP (j)</td>
<td></td>
<td>(\kappa := j)</td>
</tr>
<tr>
<td>JPOS (j)</td>
<td></td>
<td>if (r_0 > 0) then (\kappa := j)</td>
</tr>
<tr>
<td>JZERO (j)</td>
<td></td>
<td>if (r_0 = 0) then (\kappa := j)</td>
</tr>
<tr>
<td>HALT</td>
<td></td>
<td>(\kappa := 0)</td>
</tr>
</tbody>
</table>
Theorem 5.13

\(\text{DTIME}[t(n)] \subseteq \text{RAM-TIME}[t(n)] \subseteq \text{DTIME}[(t(n))^3] \)

Proof: Memorize program in finite control.

Store all registers on one tape:

\[
\begin{array}{c|c|c|c}
\kappa & r_0 & r_5 & r_{11} \\
\hline
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

Store workspace for calculations on second tape:

\[
\begin{array}{c|c}
\kappa' & A \\
\hline
1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

Use the third tape for moving over sections of the first tape.

\[
\begin{array}{c|c|c|c}
r_0 & r_5 & r_{11} \\
\hline
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

Each register contains at most \(n + t(n) \) bits.

The total number of tape cells used is at most

\[
2t(n)(n + t(n)) = O((t(n))^2)
\]

Each step takes at most \(O((t(n))^2) \) steps to simulate. ♠
Nondeterministic Turing Machines choose one of two possible moves each step.

<table>
<thead>
<tr>
<th>guess.tm</th>
<th>s</th>
<th>g</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>g, □, ←</td>
<td>q, □, ←</td>
<td>s, 0, →</td>
</tr>
<tr>
<td>△</td>
<td>s, △, →</td>
<td></td>
<td></td>
</tr>
<tr>
<td>comment</td>
<td>g or q</td>
<td>guess 0 or 1</td>
<td>the rest</td>
</tr>
</tbody>
</table>

- Write down an arbitrary string $g \in \{0, 1\}^*$, the guess.
- Proceed with the rest of the computation, using g if desired.
- Accept iff there exists some guess that leads to acceptance.
<table>
<thead>
<tr>
<th>guess.tm</th>
<th>s</th>
<th>g</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\square</td>
<td>$g, \square, -$</td>
<td>$q, \square, -$</td>
<td>$s, 0, \rightarrow$</td>
</tr>
<tr>
<td>\triangleright</td>
<td>$s, \triangleright, \rightarrow$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:

- g or q
- Guess 0 or 1
- The rest

Diagram:

```
s
 g
 s
 0
 1
 g
 s
 0
 1
 g
 s
 0 1
 g
 0 1
 s
 0 1 1
 g
 0 1 1

... ...

s
 0 1 1 0 ...
 1
 q
 0 1 1 0 ...
 1
```
Definition 5.14 The set accepted by a NTM, $N : \mathcal{L}(N) \equiv \{w \in \Sigma^* \mid \text{some run of } N(w) \text{ halts with output "1"} \}$

The time taken by N on $w \in \mathcal{L}(N)$ is the number of steps in the **shortest computation** of $N(w)$ that accepts. ♦
NTIME[t(n)] \equiv \text{probs. accepted by NTMs in time } O(t(n))

\text{NP} \equiv \text{NTIME}[n^{O(1)}] \equiv \bigcup_{i=1}^{\infty} \text{NTIME}[n^i]

\textbf{Theorem 5.15} For any function \(t(n) \),

\text{DTIME}[t(n)] \subseteq \text{NTIME}[t(n)] \subseteq \text{DSPACE}[t(n)]

Recall: \(\text{DSPACE}[t(n)] \subseteq \text{DTIME}[2^{O(t(n))}] \)

\textbf{Corollary 5.16}

\(L \subseteq P \subseteq \text{NP} \subseteq \text{PSPACE} \)

\textbf{Corollary 5.17} The definition of Recursive and r.e. are unchanged if we use nondeterministic instead of deterministic Turing machines.